Non-invasive brain stimulation (NIBS) techniques are designed to precisely and selectively target specific brain regions, thus enabling focused modulation of neural activity. Among NIBS technologies, low-intensity transcranial focused ultrasound (tFUS) has emerged as a promising new modality. The application of tFUS can safely and non-invasively stimulate deep brain structures with millimetric precision, offering distinct advantages in terms of accessibility to non-cortical regions over other NIBS methods.
View Article and Find Full Text PDFBackground: The transition from alertness to drowsiness can cause considerable changes in the respiratory system, providing an opportunity to detect driver drowsiness.
Objective: The aim of this study was to determine which respiratory features indicate driver drowsiness and then use these features to classify the level of drowsiness and alertness.
Methods: Twenty male students (mean age 25.
Objective: This study aimed to investigate the effects of a head/neck supporting exoskeleton (HNSE) on the electromyographic fatigue threshold (EMG) of the neck and shoulder muscles during a simulated overhead work task.
Background: Overhead work is a well-known risk factor for neck and shoulder musculoskeletal disorders due to the excessive strain imposed on the muscles and joints in these regions.
Method: Fourteen healthy males performed a repetitive overhead nut fastening/unfastening task to exhaustion while wearing and not wearing the HNSE at two neck extension angles (40% and 80% of neck maximum range of motion).
Several methods have been put forward to quantify cumulative loads; however, limited evidence exists as to the subsequent damages and the role of muscular fatigue. The present study assessed whether muscular fatigue could affect cumulative damage imposed on the L5-S1 joint. Trunk muscle electromyographic (EMG) activities and kinematics/kinetics of 18 healthy male individuals were evaluated during a simulated repetitive lifting task.
View Article and Find Full Text PDFN-acetylaspartate (NAA) and choline (Cho) are two brain metabolites implicated in several key neuronal functions. Abnormalities in these metabolites have been reported in both early course and chronic patients with schizophrenia (SCZ). It is, however, unclear whether NAA and Cho's alterations occur even before the onset of the disorder.
View Article and Find Full Text PDFAdv Biol (Weinh)
November 2023
Disruptions in circadian rhythms can occur in healthy aging; however, these changes are more severe and pervasive in individuals with age-related and neurodegenerative diseases, such as dementia. Circadian rhythm alterations are also present in preclinical stages of dementia, for example, in patients with mild cognitive impairments (MCI); thus, providing a unique window of opportunity for early intervention in neurodegenerative disorders. Nonetheless, there is a lack of studies examining the association between relevant changes in circadian rhythms and their relationship with cognitive dysfunctions in MCI individuals.
View Article and Find Full Text PDFResting-state electroencephalography (EEG) microstates reflect sub-second, quasi-stable states of brain activity. Several studies have reported alterations of microstate features in patients with schizophrenia (SZ). Based on these findings, it has been suggested that microstates may represent neurophysiological biomarkers for the classification of SZ.
View Article and Find Full Text PDFThis study assessed the effects of movement-based interventions on the complexity of postural changes during prolonged standing. Twenty participants, equally distributed in gender and standing work experience (SWE), completed three simulated prolonged standing sessions: without movement (control), leg exercise and footrest. The amount and complexity of variability in the centre of pressure (COP) and lumbar curvature angle were quantified using linear and nonlinear tools.
View Article and Find Full Text PDFCortico-muscular interactions play important role in sensorimotor control during motor task and are commonly studied by cortico-muscular coherence (CMC) method using joint electroencephalogram-surface electromyogram (EEG-sEMG) signals. As noise and time delay between the two signals weaken the CMC value, coupling difference between non-task sEMG channels is often undetectable. We used sparse representation of EEG channels to compute CMC and detect coupling for task-related and non-task sEMG signals.
View Article and Find Full Text PDFObjective: Spine kinematics, kinetics, and trunk muscle activities were evaluated during different stages of a fatigue-induced symmetric lifting task over time.
Background: Due to neuromuscular adaptations, postural behaviors of workers during lifting tasks are affected by fatigue. Comprehensive aspects of these adaptations remain to be investigated.
Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD) has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate.
View Article and Find Full Text PDF