Publications by authors named "Ahmad Wisnu Mulyadi"

Deep learning (DL) for predicting Alzheimer's disease (AD) has provided timely intervention in disease progression yet still demands attentive interpretability to explain how their DL models make definitive decisions. Counterfactual reasoning has recently gained increasing attention in medical research because of its ability to provide a refined visual explanatory map. However, such visual explanatory maps based on visual inspection alone are insufficient unless we intuitively demonstrate their medical or neuroscientific validity via quantitative features.

View Article and Find Full Text PDF

Modeling non-euclidean data is drawing extensive attention along with the unprecedented successes of deep neural networks in diverse fields. Particularly, a symmetric positive definite matrix is being actively studied in computer vision, signal processing, and medical image analysis, due to its ability to learn beneficial statistical representations. However, owing to its rigid constraints, it remains challenging to optimization problems and inefficient computational costs, especially, when incorporating it with a deep learning framework.

View Article and Find Full Text PDF

Identifying Alzheimer's disease (AD) involves a deliberate diagnostic process owing to its innate traits of irreversibility with subtle and gradual progression. These characteristics make AD biomarker identification from structural brain imaging (e.g.

View Article and Find Full Text PDF

Electronic health records (EHR) consist of longitudinal clinical observations portrayed with sparsity, irregularity, and high dimensionality, which become major obstacles in drawing reliable downstream clinical outcomes. Although there exist great numbers of imputation methods to tackle these issues, most of them ignore correlated features, temporal dynamics, and entirely set aside the uncertainty. Since the missing value estimates involve the risk of being inaccurate, it is appropriate for the method to handle the less certain information differently than the reliable data.

View Article and Find Full Text PDF

Electronic health records (EHRs) are characterized as nonstationary, heterogeneous, noisy, and sparse data; therefore, it is challenging to learn the regularities or patterns inherent within them. In particular, sparseness caused mostly by many missing values has attracted the attention of researchers who have attempted to find a better use of all available samples for determining the solution of a primary target task through defining a secondary imputation problem. Methodologically, existing methods, either deterministic or stochastic, have applied different assumptions to impute missing values.

View Article and Find Full Text PDF