Publications by authors named "Ahmad V"

Ebola virus (EBOV) is a negative-strand RNA virus that causes hemorrhagic fever and fatal illness in humans. According to WHO, the Ebola virus caused 28,646 fatal cases and 11,323 deaths in West Africa due to hemorrhagic fever and deadly disease in humans between 2013 and 2016. Between 1976 and 2022, approximately 15,409 fatalities caused by EBOV took place worldwide.

View Article and Find Full Text PDF

Understanding how epithelial cells in the female reproductive tract (FRT) differentiate is crucial for reproductive health, yet the underlying mechanisms remain poorly defined. At birth, FRT epithelium is highly malleable, allowing differentiation into various epithelial types, but the regulatory pathways guiding these early cell fate decisions are unclear. Here, we use neonatal mouse endometrial organoids and assembloid coculture models to investigate how innate cellular plasticity and external mesenchymal signals influence epithelial differentiation.

View Article and Find Full Text PDF

Early detection of cancer biomarkers is crucial for effective diagnosis and treatment, prompting the development of an ultrasensitive label-free electrochemical immunosensor. In this study, we fabricated an ultrasensitive label-free electrochemical immunosensor using a glassy carbon electrode/gold nanoparticles (GCE/AuNPs) modification for quantification of osteopontin (OPN), an oncomarker. The surface features of the modified electrodes were confirmed using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods.

View Article and Find Full Text PDF

Failure in recognizing non-tuberculous mycobacteria (NTM) leads to misdiagnosis of multidrug-resistant Mycobacterium tuberculosis Complex (MTBC). There is an unmet need for diagnostic tools that can differentiate between NTMs and MTBC, and that are affordable for Low- and Middle-income Countries (LMIC). Earlier we developed a strip-based CrfA assay technology to detect the Carbapenem Resistance Factor A (CrfA) enzyme present only in MTBC.

View Article and Find Full Text PDF

An imbalanced microbiome is linked to several diseases, such as cancer, inflammatory bowel disease, obesity, and even neurological disorders. Bacteria and their by-products are used for various industrial and clinical purposes. The metabolites under discussion were chosen based on their biological impacts on host and gut microbiota interactions as established by metabolome research.

View Article and Find Full Text PDF

In recent decades, there has been a concerning and consistent rise in the incidence of cancer, posing a significant threat to human health and overall quality of life. The transferrin receptor (TfR) is one of the most crucial protein biomarkers observed to be overexpressed in various cancers. This study reports on the development of a novel voltammetric immunosensor for TfR detection.

View Article and Find Full Text PDF

Microorganisms produce diverse classes of metabolites under various physiological conditions. Many bacterial strains have been reported to carry out the process of desulfurization in a cost-effective manner by converting dibenzothiophene (DBT) into 2-hydroxybiphenyl (2-HBP) and then using the 2-HBP as a carbon source for growth and development. Key rate-limiting factors and an increased concentration of 2HBP (400 µM) affect the biodesulfurization activity of bacteria through the produced metabolites.

View Article and Find Full Text PDF

The hunt for naturally occurring antiviral compounds to combat viral infection was expedited when COVID-19 and Ebola spread rapidly. Phytochemicals from Linn were evaluated as significant inhibitors of these viruses. Computational tools and techniques were used to assess the binding pattern of phytochemicals from Linn to Ebola virus VP35, SARS-CoV-2 protease, Nipah virus glycoprotein, and chikungunya virus.

View Article and Find Full Text PDF

The plant produced powerful secondary metabolites and showed strong antibacterial activities against food-spoiling bacterial pathogens. The present study aimed to evaluate antibacterial activities and to identify metabolites from the leaves and stems of using NMR spectroscopy. The major metabolites likely to be observed in aqueous extraction were 2,3-butanediol, quinic acids, vindoline, chlorogenic acids, vindolinine, secologanin, and quercetin in the leaf and stem of the .

View Article and Find Full Text PDF

An assortment of environmental matrices includes arsenic (As) in its different oxidation states, which is often linked to concerns that pose a threat to public health worldwide. The current difficulty lies in addressing toxicological concerns and achieving sustained detoxification of As. Multiple conventional degradation methods are accessible; however, they are indeed labor-intensive, expensive, and reliant on prolonged laboratory evaluations.

View Article and Find Full Text PDF

Herein, we fabricated an ultrasensitive electrochemical immunosensor for the quantitative detection of corticosteroid-binding globulin (CBG). CBG is a protein that regulates glucocorticoid levels and is an important biomarker for inflammation. A decrease in CBG levels is a key biomarker for inflammatory diseases, such as septic shock.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes that break down and reduce the level of the neurotransmitter acetylcholine (ACh). This can cause a variety of cognitive and neurological problems, including Alzheimer's disease. Taxifolin is a natural phytochemical generally found in yew tree bark and has significant pharmacological properties, such as being anti-cancer, anti-inflammatory, and antioxidant.

View Article and Find Full Text PDF

The leaves, flowers, seeds, and bark of the plant have been pharmacologically evaluated to signify the medicinal importance traditionally described for various ailments. We evaluated the anti-inflammatory potentials of 26 natural compounds using AutoDock 4.2 and Molecular Dynamics (MDS) performed with the GROMACS tool.

View Article and Find Full Text PDF

The uterine epithelium is composed of a single layer of hormone responsive polarized epithelial cells that line the lumen and form tubular glands. Endometrial epithelial organoids (EEO) can be generated from uterine epithelia and recapitulate cell composition and hormone responses in vitro. As such, the development of EEO represents a major advance for facilitating mechanistic studies in vitro.

View Article and Find Full Text PDF

Drug repurposing is an emerging field in drug development that has provided many successful drugs. In the current study, paracetamol, a known antipyretic and analgesic agent, was chemically modified to generate paracetamol derivatives as anticancer and anticyclooxygenase-2 (COX-2) agents. Compound 11 bearing a fluoro group was the best cytotoxic candidate with half-maximal inhibitory concentration (IC ) values ranging from 1.

View Article and Find Full Text PDF

The uterine epithelium is composed of a single layer of hormone responsive polarized epithelial cells that line the lumen and form tubular glands. Endometrial epithelial organoids (EEO) can be generated from uterine epithelia and recapitulate cell composition and hormone responses . As such, the development of EEO represents a major advance for facilitating mechanistic studies .

View Article and Find Full Text PDF

is a Gram-negative bacterial pathogen that causes bacteremia, urinary tract infections, intra-abdominal infections, chorioamnionitis, neonatal sepsis, and newborn meningitis. To control this bacterial pathogen a total of 3565 putative proteins targets in were screened using comparative subtractive analysis of biochemical pathways annotated by the KEGG that did not share any similarities with human proteins. One of the targets, D-alanyl-D-alanine carboxypeptidase DacB [] was observed to be implicated in the majority of cell wall synthesis pathways, leading to its selection as a novel pharmacological target.

View Article and Find Full Text PDF

Various strategies have been adapted to fabricate stable organic-inorganic hybrid perovskite (PVT) solar cells (PSCs). The triple-cation (CHNH (MA), CH(NH) (FA), and Cs) along with dual-anion (I and Br)-based PVT (TC-PVT) layer offers better stability than single cation-based PVTs. The deprivation of the PVT absorber is also influenced by the interface of the absorber with the charge transport layer (electron transport layer (ETL) and hole transport layer (HTL)).

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most common type of dementia in older people, causes neurological problems associated with memory and thinking. The key enzymes involved in Alzheimer's disease pathways are acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Because of this, there is a lot of interest in finding new AChE inhibitors.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a type of brain cancer that is typically very aggressive and difficult to treat. Glioblastoma cases have been reported to have increased during COVID-19. The mechanisms underlying this comorbidity, including genomic interactions, tumor differentiation, immune responses, and host defense, are not completely explained.

View Article and Find Full Text PDF

The prevalence of antibiotic-resistant diseases drives a constant hunt for new substitutes. Metal-containing inorganic nanoparticles have broad-spectrum antimicrobial potential to kill Gram-negative and Gram-positive bacteria. In this investigation, reduced graphene oxide-coated zinc oxide-copper (rGO@ZnO-Cu) nanocomposite was prepared by anchoring Cu over ZnO nanorods followed by coating with graphene oxide (GO) and subsequent reduction of GO to rGO.

View Article and Find Full Text PDF

Microbes are ubiquitous in the biosphere, and their therapeutic and ecological potential is not much more explored and still needs to be explored more. The are a heterogeneous group of Gram-negative and Gram-positive bacteria. are dominantly found as motile, spore-forming, Gram-positive belonging to phylum and the family .

View Article and Find Full Text PDF

Graphene (GN)-related nanomaterials such as graphene oxide, reduced graphene oxide, quantum dots, etc., and their composites have attracted significant interest owing to their efficient antimicrobial properties and thus newer GN-based composites are being readily developed, characterized, and explored for clinical applications by scientists worldwide. The GN offers excellent surface properties, i.

View Article and Find Full Text PDF

Natural resources, particularly plants and microbes, are an excellent source of bioactive molecules. Bromelain, a complex enzyme mixture found in pineapples, has numerous pharmacological applications. In a search for therapeutic molecules, we conducted an study on natural phyto-constituent bromelain, targeting pathogenic bacteria and viral proteases.

View Article and Find Full Text PDF

Low-dose computed tomography (LDCT) Non-Small Cell Lung (NSCLC) screening is associated with high false-positive rates, leading to unnecessary expensive and invasive follow ups. There is a need for minimally invasive approaches to improve the accuracy of NSCLC diagnosis. In addition, NSCLC patients harboring sensitizing mutations in epidermal growth factor receptor EGFR (T790M, L578R) are treated with Osimertinib, a potent tyrosine kinase inhibitor (TKI).

View Article and Find Full Text PDF