Publications by authors named "Ahmad Shaf"

Hyperparameter tuning plays a pivotal role in the accuracy and reliability of convolutional neural network (CNN) models used in brain tumor diagnosis. These hyperparameters exert control over various aspects of the neural network, encompassing feature extraction, spatial resolution, non-linear mapping, convergence speed, and model complexity. We propose a meticulously refined CNN hyperparameter model designed to optimize critical parameters, including filter number and size, stride padding, pooling techniques, activation functions, learning rate, batch size, and the number of layers.

View Article and Find Full Text PDF

The accurate detection of brain tumors through medical imaging is paramount for precise diagnoses and effective treatment strategies. In this study, we introduce an innovative and robust methodology that capitalizes on the transformative potential of the Swin Transformer architecture for meticulous brain tumor image classification. Our approach handles the classification of brain tumors across four distinct categories: glioma, meningioma, non-tumor, and pituitary, leveraging a dataset comprising 2,870 images.

View Article and Find Full Text PDF

Background: Segmenting tumors in MRI scans is a difficult and time-consuming task for radiologists. This is because tumors come in different shapes, sizes, and textures, making them hard to identify visually.

Objective: This study proposes a new method called the enhanced regularized ensemble encoder-decoder network (EREEDN) for more accurate brain tumor segmentation.

View Article and Find Full Text PDF

Android is the most popular operating system of the latest mobile smart devices. With this operating system, many Android applications have been developed and become an essential part of our daily lives. Unfortunately, different kinds of Android malware have also been generated with these applications' endless stream and somehow installed during the API calls, permission granted and extra packages installation and badly affected the system security rules to harm the system.

View Article and Find Full Text PDF
Article Synopsis
  • Brain tumors are a leading cause of death globally, characterized by the abnormal growth of brain tissues that can spread to surrounding areas.
  • Traditional machine learning methods for detecting brain tumors often lack accuracy, prompting research into more effective approaches.
  • This study introduces a conditional generative adversarial network (CGAN) that enhances the precision of brain tumor detection using a fine-tuned convolutional neural network (CNN), achieving accuracy rates of 0.93 and 0.97 on two different MRI datasets.
View Article and Find Full Text PDF

This paper presents a comprehensive study on the classification of brain tumor images using five pre-trained vision transformer (ViT) models, namely R50-ViT-l16, ViT-l16, ViT-l32, ViT-b16, and ViT-b32, employing a fine-tuning approach. The objective of this study is to advance the state-of-the-art in brain tumor classification by harnessing the power of these advanced models. The dataset utilized for experimentation consists of a total of 4855 images in the training set and 857 images in the testing set, encompassing four distinct tumor classes.

View Article and Find Full Text PDF
Article Synopsis
  • - Brain tumors are a major cause of death globally, with abnormal brain cell growth leading to various symptoms based on tumor type and location.
  • - The research introduces an advanced model combining CNN, ResNet50, and U-Net to improve the detection and classification of brain tumors, utilizing a dataset of 120 patients from TCGA-LGG and TCIA.
  • - Results show that the U-Net model paired with ResNet50 achieved high performance metrics (IoU: 0.91, DSC: 0.95, SI: 0.95), successfully classifying and segmenting tumor regions better than other models tested.
View Article and Find Full Text PDF

A brain tumor is a significant health concern that directly or indirectly affects thousands of people worldwide. The early and accurate detection of brain tumors is vital to the successful treatment of brain tumors and the improved quality of life of the patient. There are several imaging techniques used for brain tumor detection.

View Article and Find Full Text PDF

The mental and physical well-being of healthcare workers is being affected by global COVID-19. The pandemic has impacted the mental health of medical staff in numerous ways. However, most studies have examined sleep disorders, depression, anxiety, and post-traumatic problems in healthcare workers during and after the outbreak.

View Article and Find Full Text PDF

Electricity consumption prediction plays a vital role in intelligent energy management systems, and it is essential for electricity power supply companies to have accurate short and long-term energy predictions. In this study, a deep-ensembled neural network was used to anticipate hourly power utilization, providing a clear and effective approach for predicting power consumption. The dataset comprises of 13 files, each representing a different region, and ranges from 2004 to 2018, with two columns for the date, time, year and energy expenditure.

View Article and Find Full Text PDF

Approximately 30% of the global population is suffering from obesity and being overweight, which is approximately 2.1 billion people worldwide. The ratio is expected to surpass 40% by 2030 if the current balance continues to grow.

View Article and Find Full Text PDF

High end-to-end delay is a significant challenge in the data collection process in the underwater environment. Autonomous Underwater Vehicles (AUVs) are a considerably reliable source of data collection if they have significant trajectory movement. Therefore, in this paper, a new routing algorithm known as Elliptical Shaped Efficient Data Gathering (ESEDG) is introduced for the AUV movement.

View Article and Find Full Text PDF

Urbanization is a big concern for both developed and developing countries in recent years. People shift themselves and their families to urban areas for the sake of better education and a modern lifestyle. Due to rapid urbanization, cities are facing huge challenges, one of which is waste management, as the volume of waste is directly proportional to the people living in the city.

View Article and Find Full Text PDF

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images.

View Article and Find Full Text PDF

Glaucoma, an eye disease, occurs due to Retinal damages and it is an ordinary cause of blindness. Most of the available examining procedures are too long and require manual instructions to use them. In this work, we proposed a multi-level deep convolutional neural network (ML-DCNN) architecture on retinal fundus images to diagnose glaucoma.

View Article and Find Full Text PDF

Nowadays, there is a growing trend in smart cities. Therefore, the Internet of Things (IoT) enabled Underwater and Wireless Sensor Networks (I-UWSN) are mostly used for monitoring and exploring the environment with the help of smart technology, such as smart cities. The acoustic medium is used in underwater communication and radio frequency is mostly used for wireless sensor networks to make communication more reliable.

View Article and Find Full Text PDF