Publications by authors named "Ahmad Novi Muslimin"

The physical and mechanical properties of biopolymers can be improved by heating technologies. In this research, we improved the properties of Polyvinyl alcohol (PVA)/ extract (UGE) blend films by post-heating method. After post-heating, the blend film exhibited higher resistance to UV light and improved contact angle performance, while water vapor permeability and moisture absorption decreased.

View Article and Find Full Text PDF

Developing a conductive cellulose film without any metal compounds remains challenging, though in great demand. However, cellulose film prepared from bacterial cellulose (BC) powder without any metal compounds has poor tensile, physical, and electrical properties, thus limiting its application. Herein, this study aims to prepare and characterize an all-cellulose film from 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized bacterial cellulose (TOBC) powders without adding metal compounds and treated by ultrasonication.

View Article and Find Full Text PDF

This work characterized bacterial cellulose (BC)/Uncaria gambir (G) biocomposite film prepared with ultrasonication treatment. Films were prepared from BC powder suspensions in distilled water without and with various loadings (0.05 g, 0.

View Article and Find Full Text PDF

Transparent film with high thermal resistance and antimicrobial properties has many applications in the food packaging industry particularly packaging for reheatable food. This work investigates the effects of heat treatment on the thermal resistance, stability of transparency and antimicrobial activity of transparent cellulose film. The film from ginger nanocellulose fibers was prepared with chemicals and ultrasonication.

View Article and Find Full Text PDF

With the increasing demand for simple, efficient, environmentally friendly preparation methods to produce cellulose nanofibers for reinforcing a biodegradable film is increased, the role of nanofibers from the pure cellulose produced by bacteria becomes more important. This work characterized bacterial cellulose nanofibers disintegrated using a high shear homogenizer. These nanofibers, in 2.

View Article and Find Full Text PDF