Publications by authors named "Ahmad K Karanji"

The first 17 amino acid residues of Huntingtin protein (Nt17 of htt) are thought to play an important role in the protein's function; Nt17 is one of two membrane binding domains in htt. In this study the binding ability of Nt17 peptide with vesicles comprised of two subclasses of phospholipids is studied using electrospray ionization - mass spectrometry (ESI-MS) and molecular dynamics (MD) simulations. Overall, the peptide is shown to have a greater propensity to interact with vesicles of phosphatidylcholine (PC) rather than phosphatidylethanolamine (PE) lipids.

View Article and Find Full Text PDF

Here, we report a continuous flow-based ionization method, capillary vibrating sharp-edge spray ionization (cVSSI), that nebulizes liquid sample directly at the outlet of a capillary without using high-speed nebulization gas or a high electrical field. cVSSI is built upon the recently reported VSSI principle which nebulizes bulk liquid using vibrating sharp-edges. By attaching a short piece of fused silica capillary on top of the vibrating glass slide in VSSI, liquid is nebulized at the outlet of the capillary as the result of the vibration.

View Article and Find Full Text PDF

The dominant gas-phase conformer of [M+3H] ions of the model peptide acetyl-PSSSSKSSSSKSSSSKSSSSK has been examined with ion mobility spectrometry (IMS), gas-phase hydrogen deuterium exchange (HDX), and mass spectrometry (MS) techniques. The [M+3H] peptide ions are observed predominantly as a relatively compact conformer type. Upon subjecting these ions to electron transfer dissociation (ETD), the level of protection for each amino acid residue in the peptide sequence is assessed.

View Article and Find Full Text PDF

Ion mobility spectrometry-mass spectrometry (IMS-MS) in combination with gas-phase hydrogen/deuterium exchange (HDX) and collision-induced dissociation (CID) is evaluated as an analytical method for small-molecule standard and mixture characterization. Experiments show that compound ions exhibit unique HDX reactivities that can be used to distinguish different species. Additionally, it is shown that gas-phase HDX kinetics can be exploited to provide even further distinguishing capabilities by using different partial pressures of reagent gas.

View Article and Find Full Text PDF