This paper build a structure of fuzzy neural network, which is well sufficient to gain a fuzzy interpolation polynomial of the form [Formula: see text] where [Formula: see text] is crisp number (for [Formula: see text], which interpolates the fuzzy data [Formula: see text]. Thus, a gradient descent algorithm is constructed to train the neural network in such a way that the unknown coefficients of fuzzy polynomial are estimated by the neural network. The numeral experimentations portray that the present interpolation methodology is reliable and efficient.
View Article and Find Full Text PDFIn the big data era, systems reliability is critical to effective systems risk management. In this paper, a novel multiobjective approach, with hybridization of a known algorithm called NSGA-II and an adaptive population-based simulated annealing (APBSA) method is developed to solve the systems reliability optimization problems. In the first step, to create a good algorithm, we use a coevolutionary strategy.
View Article and Find Full Text PDF