Aim And Objective: To evaluate the safety of two new generic ophthalmic formulations, Latanost (latanoprost) and Latacom (latanoprost and timolol) by utilizing the three-dimensional reconstructed human cornea-like epithelium (RhCE) tissue constructs as an model in the assessment of ocular irritation.
Materials And Methods: irritation test was conducted on Latanost (LTN) and Latacom (LTC) and their corresponding innovators, Xalatan (XLT) and Xalacom (XLC), respectively, by using RhCE. According to the OECD guidelines No.
Chitosan-derived biomaterials have been reported to adhere when in contact with blood by encouraging platelets to adhere, activate and aggregate at the sites of vascular injury, thus enhanced wound healing capacity. This study investigated platelet morphology changes and the expression level of transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor-AB (PDGF-AB) in the adherence of two different types of chitosans in von Willebrand disease (vWD): N,O-carboxymethylchitosan (NO-CMC) and oligo-chitosan (O-C). Fourteen vWD voluntary subjects were recruited, and they provided written informed consent.
View Article and Find Full Text PDFThromb Res
September 2015
Introduction: Von Willebrand disease (vWD) is the second least common hemostatic disorder in Malaysia, and it has a low prevalence. This study examined the underlying platelet thrombogenicity cascades in the presence of different formulations of chitosan-derivatives in vWD patients. This paper aimed to determine the significant influence of chitosan biomaterial in stimulating the platelet thrombogenicity cascades that involve the von Willebrand factor, Factor 8, Thromboxane A2, P2Y12 and Glycoprotein IIb/IIIa in vWD.
View Article and Find Full Text PDFPlatelet membrane receptor glycoprotein IIb/IIIa (gpiibiiia) is a receptor detected on platelets. Adenosine diphosphate (ADP) activates gpiibiiia and P2Y12, causing platelet aggregation and thrombus stabilization during blood loss. Chitosan biomaterials were found to promote surface induced hemostasis and were capable of activating blood coagulation cascades by enhancing platelet aggregation.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
December 2014
Background: The physical and biological characteristics of oligochitosan (O-C) film, including its barrier and mechanical properties, in vitro cytotoxicity and in vivo biocompatibility, were studied to assess its potential use as a wound dressing.
Methods: Membrane films were prepared from water-soluble O-C solution blended with various concentrations of glycerol to modify the physical properties of the films. In vitro and in vivo biocompatibility evaluations were performed using primary human skin fibroblast cultures and subcutaneous implantation in a rat model, respectively.
Chitosan-derived hemostatic agents with various formulations may have distinct potential in hemostasis. This study assessed the ability of different grades and forms of chitosan derivatives as hemostatic agents to enhance platelet adhesion and aggregation in vitro. The chitosan derivatives utilized were 2% NO-CMC, 7% NO-CMC (with 0.
View Article and Find Full Text PDF