Publications by authors named "Ahmad H Milyani"

The number of unsecured and portable Internet of Things (IoT) devices in the smart industry is growing exponentially. A diversity of centralized and distributed platforms have been implemented to defend against security attacks; however, these platforms are insecure because of their low storage capacities, high power utilization, single node failure, underutilized resources, and high end-to-end delay. Blockchain and Software-Defined Networking (SDN) are growing technologies to create a secure system and to ensure safe network connectivity.

View Article and Find Full Text PDF

In this paper, a defused decision boundary which renders misclassification issues due to the presence of cross-pairs is investigated. Cross-pairs retain cumulative attributes of both classes and misguide the classifier due to the defused data samples' nature. To tackle the problem of the defused data, a Tomek Links technique targets the cross-pair majority class and is removed, which results in an affine-segregated decision boundary.

View Article and Find Full Text PDF

Coronavirus 2019 (COVID-19) has become a pandemic. The seriousness of COVID-19 can be realized from the number of victims worldwide and large number of deaths. This paper presents an efficient deep semantic segmentation network (DeepLabv3Plus).

View Article and Find Full Text PDF

The capacity to carry out one's regular tasks is affected to varying degrees by hearing difficulties. Poorer understanding, slower learning, and an overall reduction in efficiency in academic endeavours are just a few of the negative impacts of hearing impairments on children's performance, which may range from mild to severe. A significant factor in determining whether or not there will be a decrease in performance is the kind and source of impairment.

View Article and Find Full Text PDF

A combination of environmental conditions may cause skin illness everywhere on the earth, and it is one of the most dangerous diseases that can develop as a result. A major goal in the selection of characteristics is to produce predictions about skin disease instances in connection with influencing variables, which is one of the most important tasks. As a consequence of the widespread usage of sensors, the amount of data collected in the health industry is disproportionately large when compared to data collected in other sectors.

View Article and Find Full Text PDF

Visual object tracking (VOT) is a vital part of various domains of computer vision applications such as surveillance, unmanned aerial vehicles (UAV), and medical diagnostics. In recent years, substantial improvement has been made to solve various challenges of VOT techniques such as change of scale, occlusions, motion blur, and illumination variations. This paper proposes a tracking algorithm in a spatiotemporal context (STC) framework.

View Article and Find Full Text PDF

Despite eminent progress in recent years, various challenges associated with object tracking algorithms such as scale variations, partial or full occlusions, background clutters, illumination variations are still required to be resolved with improved estimation for real-time applications. This paper proposes a robust and fast algorithm for object tracking based on spatio-temporal context (STC). A pyramid representation-based scale correlation filter is incorporated to overcome the STC's inability on the rapid change of scale of target.

View Article and Find Full Text PDF