Publications by authors named "Ahmad H Alammari"

This research investigated the impact of Cannabistilbene I on Angiotensin II (Ang II)-induced cardiac hypertrophy and its potential role in cytochrome P450 (CYP) enzymes and arachidonic acid (AA) metabolic pathways. Cardiac hypertrophy, a response to increased stress on the heart, can lead to severe cardiovascular diseases if not managed effectively. CYP enzymes and AA metabolites play critical roles in cardiac function and hypertrophy, making them important targets for therapeutic intervention.

View Article and Find Full Text PDF

This research aimed to clarify the impacts of cannflavin-C on angiotensin II (Ang II)-induced cardiac hypertrophy and their potential role in modulating cytochrome P450 1B1 (CYP1B1) and arachidonic acid (AA) metabolites. Currently there is no evidence to suggest that cannflavin-C, a prenylated flavonoid, has any significant effects on the heart or cardiac hypertrophy. The metabolism of arachidonic acid (AA) into midchain hydroxyeicosatetraenoic acids (HETEs), facilitated by CYP1B1 enzyme, plays a role in the development of cardiac hypertrophy, which is marked by enlarged cardiac cells.

View Article and Find Full Text PDF

The success of arsenic trioxide (ATO) in acute promyelocytic leukemia has driven a plethora studies to investigate its efficacy in other malignancies. However, the inherent toxicity of ATO limits the expansion of its clinical applications. Such toxicity may be linked to ATO-induced metabolic derangements of endogenous substrates.

View Article and Find Full Text PDF

Cardiac cellular hypertrophy is the increase in the size of individual cardiac cells. Cytochrome P450 1B1 (CYP1B1) is an extrahepatic inducible enzyme that is associated with toxicity, including cardiotoxicity. We previously reported that 19-hydroxyeicosatetraenoic acid (19-HETE) inhibited CYP1B1 and prevented cardiac hypertrophy in enantioselective manner.

View Article and Find Full Text PDF
Article Synopsis
  • Hydroxyeicosatetraenoic acids (HETEs) are metabolites derived from arachidonic acid, categorized into midchain, subterminal, and terminal HETEs, with various physiological and pathological effects.
  • Research revealed significant differences in HETE formation between male and female rats, showing that male organs had higher levels of most HETEs, particularly midchain HETEs and 20-HETE.
  • The study also found that certain enantiomers of HETEs exhibited differing formation rates across organs, highlighting the complexity of AA metabolism and its potential implications for disease understanding based on sex differences.
View Article and Find Full Text PDF

Aryl hydrocarbon receptor (AhR) is a multifunctional receptor that regulates cytochrome P450 1A1 (CYP1A1), an arachidonic acid (AA) metabolizing enzyme producing 19-hydroxyeicosatetraenoic acid (HETE). 6-formylindolo[3,2-b]carbazole (FICZ) demonstrates great affinity toward the AhR. Recently, we have shown that 19(S)-HETE is preferentially cardioprotective.

View Article and Find Full Text PDF

Arachidonic acid (AA) is a polyunsaturated fatty acid with a structure of 20:4(ω-6). Cytochrome P450s (CYPs) metabolize AA to several regioisomers and enantiomers of hydroxyeicosatetraenoic acids (HETEs). The hydroxy-metabolites (HETEs) exist as enantiomers in the biological system.

View Article and Find Full Text PDF

Cytochrome P450 1B1 (CYP1B1) is known to be involved in the pathogenesis of several cardiovascular diseases, including cardiac hypertrophy and heart failure, through the formation of cardiotoxic metabolites named as mid-chain hydroxyeicosatetraenoic acids (HETEs). Recently, we have demonstrated that fluconazole decreases the level of mid-chain HETEs in human liver microsomes, inhibits human recombinant CYP1B1 activity, and protects against angiotensin II-induced cellular hypertrophy in H9c2 cells. Therefore, the overall purpose of this study was to elucidate the potential cardioprotective effect of fluconazole against cardiac hypertrophy induced by abdominal aortic constriction (AAC) in rats.

View Article and Find Full Text PDF

Cytochrome P450 1B1 (CYP1B1) has been reported to have a major role in metabolizing arachidonic acid (AA) into cardiotoxic metabolites, mid-chain hydroxyeicosatetraenoic acids (HETEs). Recently, we have shown that fluconazole decreases the level of mid-chain HETEs in human liver microsomes. Therefore, the objectives of this study were to investigate the effect of fluconazole on CYP1B1 mediated mid-chain HETEs and to explore its potential protective effect against angiotensin II- (Ang II)-induced cellular hypertrophy.

View Article and Find Full Text PDF

Several studies have demonstrated the role of cytochrome P450 (CYP) and its associated arachidonic acid (AA) metabolites in the anthracyclines-induced cardiac toxicity. However, the ability of daunorubicin (DNR) to induce cardiotoxicity through the modulation of CYP and its associated AA metabolites has not been investigated yet. Therefore, we hypothesized that DNR-induced cardiotoxicity is mediated through the induction of cardiotoxic hydroxyeicosatetraenoic acids and/or the inhibition of cardioprotctive epoxyeicosatrienoic acids (EETs).

View Article and Find Full Text PDF