A strategy is described for the direct preparation of Au nanoparticles (AuNPs) on a Fe-based support, coated with porous carbon (PC), via pyrolysis of an AuCN functionalised Prussian Blue (PB) metal organic framework (MOF). The composite starting material was prepared with an even distribution of AuCN on the surface via galvanic exchange of PB with a gold salt in solution. The resulting structures after pyrolysis were shown to be active Au-based nanomaterials for model applications including catalysis (4-nitrophenol reduction) and electroanalysis (arsenic (III) detection), suggesting broad application where Au nanoparticles are required at a liquid-solid interface.
View Article and Find Full Text PDFConventional organic fluorophores lose their ability to fluoresce after repeated exposure to excitation light due to photobleaching. Therefore, research into emerging bright and photostable nanomaterials has become of great interest for a range of applications such as bio-imaging and tracking. Among these emerging fluorophores, metal oxide-based nanomaterials have attracted significant attention as a potential multifunctional material with photocatalytic and angeogenisis abilities in addition to fluorescnce applications.
View Article and Find Full Text PDFThe development of reliable and ultrasensitive detection marker for mercury ions (Hg) in drinking water is of great interest for toxicology assessment, environmental protection and human health. Although many Hg detection methods have been developed, only few offer sensitivities below 1pM. Herein, we describe a simple histidine (H) conjugated perylene diimide (PDI) bolaamphiphile (HPH) as a dual-responsive optical marker to develop highly selective and sensitive probe as visible (sol-to-gel transformation), fluorescence and SERS-based Hgsensor platform in the water.
View Article and Find Full Text PDFBimetallic Ni-Au monolayer colloidal crystals (MCCs) were fabricated by galvanic replacement of Ni monolayers with Au salt. The influence of Au concentration used in the galvanic replacement solutions on the morphology and structure of the resulting Ni-Au surface is studied. It was found that the use of monolayer colloidal crystals, which display cohesive structure formations across the monolayer, results in the galvanic replacement reaction occurring more evenly over the surface when compared to the thin film counterpart.
View Article and Find Full Text PDFDonor doping of perovskite oxides has emerged as an attractive technique to create high performance and low energy non-volatile analog memories. Here, we examine the origins of improved switching performance and stable multi-state resistive switching in Nb-doped oxygen-deficient amorphous SrTiO (Nb:a-STO ) metal-insulator-metal (MIM) devices. We probe the impact of substitutional dopants (i.
View Article and Find Full Text PDFThe construction of highly efficient inorganic mimetic enzymes (nanozymes) is much needed to replace natural enzymes due to their instability and high cost. Recently, nanoscale CeO has been attracting significant interest due to its unique properties such as facile redox behaviour (Ce↔ Ce) and surface defects. In the present work, various amounts of Fe-doped CeO nanorods (NRs) (with 3, 6, 9, and 12% Fe doping) were synthesized using a facile hydrothermal method and investigated for peroxidase-like activity and glucose detection.
View Article and Find Full Text PDFThe synthesis of ordered monolayers of gold nano-urchin (Au-NU) nanostructures with controlled size, directly on thin films using a simple electrochemical method is reported in this study. In order to demonstrate one of the vast potential applications, the developed Au-NUs were formed on the electrodes of transducers (QCM) to selectively detect low concentrations of elemental mercury (Hg(0)) vapor. It was found that the sensitivity and selectivity of the sensor device is enhanced by increasing the size of the nanospikes on the Au-NUs.
View Article and Find Full Text PDFPiezoelectric acoustic wave devices integrated with noble metal surfaces provide exciting prospects for the direct measurement of toxic gas species such as mercury (Hg) in the atmosphere. Even though gold (Au) based acoustic wave sensors have been utilized extensively for detecting Hg, the potential of using other metal surfaces such as silver (Ag) is yet to be thoroughly studied. Here, we developed Ag sensitive layer-based surface acoustic wave (SAW) and quartz crystal microbalance (QCM) sensors and focused on their comparative analysis for Hg sensing applications with parameters such as the sensor sensitivity, selectivity, adsorption/desorption isotherm and Hg diffusion into the surface thoroughly studied.
View Article and Find Full Text PDFWe developed a novel conductometric device with nanostructured gold (Au) sensitive layer which showed high-performance for elemental mercury (Hg(0)) vapor detection under simulated conditions that resemble harsh industrial environments. That is, the Hg(0) vapor sensing performance of the developed sensor was investigated under different operating temperatures (30-130 °C) and working conditions (i.e.
View Article and Find Full Text PDFMicroelectromechanical sensors based on surface acoustic wave (SAW) and quartz crystal microbalance (QCM) transducers possess substantial potential as online elemental mercury (Hg(0)) vapor detectors in industrial stack effluents. In this study, a comparison of SAW- and QCM-based sensors is performed for the detection of low concentrations of Hg(0) vapor (ranging from 24 to 365 ppbv). Experimental measurements and finite element method (FEM) simulations allow the comparison of these sensors with regard to their sensitivity, sorption and desorption characteristics, and response time following Hg(0) vapor exposure at various operating temperatures ranging from 35 to 75 °C.
View Article and Find Full Text PDFp-Type Cu2O/n-type ZnO core/shell photocatalysts has been demonstrated to be an efficient photocatalyst as a result of their interfacial structure tendency to reduce the recombination rate of photogenerated electron-hole pairs. Monodispersed Cu2O nanocubes were synthesized and functioned as the core, on which ZnO nanoparticles were coated as the shells having varying morphologies. The evenly distributed ZnO decoration as well as assembled nanospheres of ZnO were carried out by changing the molar concentration ratio of Zn/Cu.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2015
This study reports for the first time that polystyrene monodispersed nanosphere monolayer (PS-MNM) based Au (Au-MNM) and Ag (Ag-MNM) nanostructures deposited on quartz crystal microbalance (QCM) transducers can be used for nonoptical based chemical sensing with extremely high sensitivity and selectivity. This was demonstrated by exposing the Au-MNM and Ag-MNM based QCMs to low concentrations of Hg(0) vapor in the presence interferent gas species (i.e.
View Article and Find Full Text PDFMercury being one of the most toxic heavy metals has long been a focus of concern due to its gravest threats to human health and environment. Although multiple methods have been developed to detect and/or remove dissolved mercury, many require complicated procedures and sophisticated equipment. Here, we describe a simple surface enhanced Raman spectroscopy (SERS) active ZnO/Ag nanoarrays that can detect Hg(2+), remove Hg(2+) and can be fully regenerated, not just from Hg(2+) contamination when heat-treated but also from the SERS marker when exposed to UV as a result of the self-cleaning ability of this schottky junction photocatalyst.
View Article and Find Full Text PDFHypothesis: The reproducible surface enhanced Raman scattering (SERS)-based sensing of an analyte relies on high quality SERS substrates that offer uniformity over large areas. Uniform ZnO nanoarrays are expected to offer an appropriate platform for SERS sensing. Moreover, since ZnO has good photocatalytic properties, controllable decoration of silver nanoparticles on ZnO nanoarrays may offer an additional opportunity to clean up SERS substrates after each sensing event.
View Article and Find Full Text PDFA generalized low-temperature approach for fabricating high aspect ratio nanorod arrays of alkali metal-TCNQ (7,7,8,8-tetracyanoquinodimethane) charge transfer complexes at 140 °C is demonstrated. This facile approach overcomes the current limitation associated with fabrication of alkali metal-TCNQ complexes that are based on physical vapor deposition processes and typically require an excess of 800 °C. The compatibility of soft substrates with the proposed low-temperature route allows direct fabrication of NaTCNQ and LiTCNQ nanoarrays on individual cotton threads interwoven within the 3D matrix of textiles.
View Article and Find Full Text PDF