Auxetic structures, with re-entrant (inverted hexagonal or bow tie) unit cells, have received considerable interest due to their negative Poisson's ratio property that results in superior mechanical properties. This study proposes a simple method to create non-homogeneous re-entrant honeycombs by modifying the size of chevron crosslinks. The various structural designs were conceived by changing the geometrical dimensions of the crosslinks, namely the length (lcl) and the thickness (tcl), while maintaining the parameters of the re-entrant cell walls.
View Article and Find Full Text PDFSelective Laser Melting (SLM) is an emerging Additive Manufacturing (AM) technique for the on-demand fabrication of metal parts. The mechanical properties of Selectively Laser Melted (SLMed) parts are sensitive to oxygen concentration within the SLM build chamber due to the formation of oxides, which may lead to various negative consequences. As such, this work explores the influence of SLM atmospheric Oxygen Content (OC) on the macroscopic mechanical properties of SLMed AlSi10Mg bulk material and Triply Periodic Minimal Surface (TPMS) lattices namely primitive, gyroid, and diamond.
View Article and Find Full Text PDFEfficient and power-dense electrical machines are critical in driving the next generation of green energy technologies for many industries including automotive, aerospace and energy. However, one of the primary requirements to enable this is the fabrication of compact custom windings with optimised materials and geometries. Electrical machine windings rely on highly electrically conductive materials, and therefore, the Additive Manufacturing (AM) of custom copper (Cu) and silver (Ag) windings offers opportunities to simultaneously improve efficiency through optimised materials, custom geometries and topology and thermal management through integrated cooling strategies.
View Article and Find Full Text PDFAuxetic meta-biomaterials offer unconventional strain behaviour owing to their negative Poisson's ratio (-υ) leading to deformation modes and mechanical properties different to traditional cellular biomaterials. This can lead to favourable outcomes for load-bearing tissue engineering constructs such as bone scaffolds. Emerging early-stage studies have shown the potential of auxetic architecture in increasing cell proliferation and tissue reintegration owing to their -υ.
View Article and Find Full Text PDFCOVID-19 pandemic and associated supply-chain disruptions emphasise the requirement for antimicrobial materials for on-demand manufacturing. Besides aerosol transmission, SARS-CoV-2 is also propagated through contact with virus-contaminated surfaces. As such, the development of effective biofunctional materials that can inactivate SARS-CoV-2 is critical for pandemic preparedness.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
February 2021
The COVID-19 pandemic has resulted in worldwide shortages of nasopharyngeal swabs required for sample collection. While the shortages are becoming acute due to supply chain disruptions, the demand for testing has increased both as a prerequisite to lifting restrictions and in preparation for the second wave. One of the potential solutions to this crisis is the development of 3D printed nasopharyngeal swabs that behave like traditional swabs.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2020
Implant infection is a serious complication resulting in pain, mortality, prolonged recovery, and antimicrobial resistance (AMR). Reducing the risk-of-infection associated with tissue implants require imminent attention, where pure silver (Ag) offers enormous potential. However, the printability, mechanical performance nor microbial resistance of additively manufactured (AM) pure Ag is unavailable in literature.
View Article and Find Full Text PDFFreshwater supplies are in shortage relative to the high demand for different human activities, making desalination of saline water a must. Desalination to extract water from saline water has been well established as a reliable non-conventional water supply. However, desalination as any human-based process has resulted in many impacts on the environment.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
February 2020
Critically engineered stiffness and strength of a scaffold are crucial for managing maladapted stress concentration and reducing stress shielding. At the same time, suitable porosity and permeability are key to facilitate biological activities associated with bone growth and nutrient delivery. A systematic balance of all these parameters are required for the development of an effective bone scaffold.
View Article and Find Full Text PDFThe greenhouse gases emissions produced by industry and power plants are the cause of climate change. An effective approach for limiting the impact of such emissions is adopting modern Carbon Capture and Storage (CCS) technology that can capture more than 90% of carbon dioxide (CO) generated from power plants. This paper presents an evaluation of state-of-the-art technologies used in the capturing CO.
View Article and Find Full Text PDF