This experimental study aimed to develop a fiber-reinforced lightweight mineral wool-based alkali activated mortar. The lightweight mineral wool-based alkali activated mortars were produced using premade foam and reinforced by polypropylene (PP) fibers. They were assessed in terms of fresh and hardened-state properties.
View Article and Find Full Text PDFThis experimental study aimed to develop alkali-activated concretes containing carbonated basic oxygen furnace (BOF) slag aggregates. In the first stage, the impacts of replacing normal aggregates with carbonated BOF slag aggregates in different alkali-activated concretes were determined by assessing mechanical properties (compressive and flexural strengths), morphology, thermogravimetric analyses (TGA), differential thermogravimetry (DTG) and the crystalline phases using X-ray diffraction analysis. Second, the developed plain alkali-activated concrete was reinforced by different fibre types and dosages to limit the negative impacts of the drying shrinkage and to improve strength.
View Article and Find Full Text PDFThis paper presents experimental results regarding the efficiency of using acoustic panels made with fiber-reinforced alkali-activated slag foam concrete containing lightweight recycled aggregates produced by using Petrit-T (tunnel kiln slag). In the first stage, 72 acoustic panels with dimension 500 × 500 × 35 mm were cast and prepared. The mechanical properties of the panels were then assessed in terms of their compressive and flexural strengths.
View Article and Find Full Text PDF