Publications by authors named "Ahmad Alqudah"

Enhancing salt tolerance genetically through defining the genetic and physiological mechanisms intergenerational and transgenerational stress memory that contributes to sustainable agriculture by reducing the reliance on external inputs such as irrigation and improving the adaptability of barley to changing climate conditions. Salinity stress poses a substantial challenge to barley production worldwide, adversely affecting crop yield, quality, and agricultural sustainability. To address this, the present study utilized a genome-wide association san (GWAS) to identify genetic associations underlying intergenerational and transgenerational stress memory in response to salinity in a diverse panel of 138 barley accessions.

View Article and Find Full Text PDF
Article Synopsis
  • Plant height (PH) is crucial for crop breeding, impacting both straw and grain yield in wheat, and this study aims to enhance understanding of the genetic factors influencing PH by using advanced GWAS techniques on diverse Bulgarian bread wheat varieties.
  • The research identified 25 quantitative trait loci (QTL) related to PH across 14 chromosomes, highlighting 21 environmentally stable quantitative trait nucleotides (QTNs) and novel genomic regions with no previously known associations, which could be significant for future breeding efforts.
  • Noteworthy findings include a haplotype block on chromosome 6A that contains both height-reducing and height-promoting QTN loci, indicating complex genetic interactions and potential pathways
View Article and Find Full Text PDF

Salinity is one of the major environmental factor that can greatly impact the growth, development, and productivity of barley. Our study aims to detect the natural phenotypic variation of morphological and physiological traits under both salinity and potassium nanoparticles (n-K) treatment. In addition to understanding the genetic basis of salt tolerance in barley is a critical aspect of plant breeding for stress resilience.

View Article and Find Full Text PDF

Flag leaf (FL) dimension has been reported as a key ecophysiological aspect for boosting grain yield in wheat. A worldwide winter wheat panel consisting of 261 accessions was tested to examine the phenotypical variation and identify quantitative trait nucleotides (QTNs) with candidate genes influencing FL morphology. To this end, four FL traits were evaluated during the early milk stage under two growing seasons at the Leibniz Institute of Plant Genetics and Crop Plant Research.

View Article and Find Full Text PDF

Genetic enhancement of grain production and quality is a priority in wheat breeding projects. In this study, we assessed two key agronomic traits-grain protein content (GPC) and thousand kernel weight (TKW)-across 179 Bulgarian contemporary and historic varieties and landraces across three growing seasons. Significant phenotypic variation existed for both traits among genotypes and seasons, and no discernible difference was evident between the old and modern accessions.

View Article and Find Full Text PDF

Biochar is increasingly recognized for its ability to enhance hydro-physical properties of soil, offering promising solutions for improving soil structure, water retention, and overall agricultural productivity. In this study, sandy loam soil was amended at different rates (0, 15, 30, and 60 t ha) of biochar produced from olive pomace (Jift) at different pyrolysis temperatures (300, 400, 500, and 600 °C), and incubated for 30, 60, and 90 days. The biochar-amended soils were collected for analysis after each incubation period for infiltration rate, aggregate stability, soil water retention, water repellency, and penetration resistance.

View Article and Find Full Text PDF

Hybrid breeding is a promising strategy to quickly improve wheat yield and stability. Due to the usefulness of the Rht 'Green Revolution' dwarfing alleles, it is important to gain a better understanding of their impact on traits related to hybrid development. Traits associated with cross-pollination efficiency were studied using Near Isogenic Lines carrying the different sets of alleles in Rht genes: Rht1 (semi-dwarf), Rht2 (semi-dwarf), Rht1 + 2 (dwarf), Rht3 (extreme dwarf), Rht2 + 3 (extreme dwarf), and rht (tall) during four growing seasons.

View Article and Find Full Text PDF

Protein deficiency is recognized among the major global health issues with an underestimation of its importance. Genetic biofortification is a cost-effective and sustainable strategy to overcome global protein malnutrition. This study was designed to focus on protein-dense grains of wheat ( L.

View Article and Find Full Text PDF

Grain protein content (GPC) is a key aspect of grain quality, a major determinant of the flour functional properties and grain nutritional value of bread wheat. Exploiting diverse germplasms to identify genes for improving crop performance and grain nutritional quality is needed to enhance food security. Here, we evaluated GPC in a panel of 255 L.

View Article and Find Full Text PDF

In the context of a continuously increasing human population that needs to be fed, with environmental protection in mind, nitrogen use efficiency (NUE) improvement is becoming very important. To understand the natural variation of traits linked to nitrogen uptake efficiency (UPE), one component of NUE, the multiparent advanced generation intercross (MAGIC) winter wheat population WM-800 was phenotyped under two contrasting nitrogen (N) levels in a high-throughput phenotyping facility for six weeks. Three biomass-related, three root-related, and two reflectance-related traits were measured weekly under each treatment.

View Article and Find Full Text PDF

Drought is a major constraint in wheat () grain yield. The present work aimed to identify quantitative trait nucleotides (QTNs)/ candidate genes influencing drought tolerance-related traits at the seedling stage in 261 accessions of a diverse winter wheat panel. Seeds from three consecutive years were exposed to polyethylene glycol 12% (PEG-6000) and a control treatment (distilled water).

View Article and Find Full Text PDF

The multi-parent-advanced-generation-intercross (MAGIC) population WM-800 was developed by intercrossing eight modern winter wheat cultivars to enhance the genetic diversity present in breeding populations. We cultivated WM-800 during two seasons in seven environments under two contrasting nitrogen fertilization treatments. WM-800 lines exhibited highly significant differences between treatments, as well as high heritabilities among the seven agronomic traits studied.

View Article and Find Full Text PDF

With the advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) mediated genome editing, crop improvement has progressed significantly in recent years. In this genome editing tool, CRISPR-associated Cas nucleases are restricted to their target of DNA by their preferred protospacer adjacent motifs (PAMs). A number of CRISPR-Cas variants have been developed e.

View Article and Find Full Text PDF

Association genetic analysis empowered us to identify candidate genes underlying natural variation of morpho-physiological, antioxidants, and grain yield-related traits in barley. Novel intriguing genomic regions were identified and dissected. Salinity stress is one of the abiotic stresses that influence the morpho-physiological, antioxidants, and yield-related traits in crop plants.

View Article and Find Full Text PDF

Panicle degeneration, sometimes known as abortion, causes heavy losses in grain yield. However, the mechanism of naturally occurring panicle abortion is still elusive. In a previous study, we characterized a mutant, exhibiting abortion in apical spikelets starting from the 6 cm stage of panicle development.

View Article and Find Full Text PDF

To date, very little research on drought tolerance has been conducted at the seedling stage in winter wheat. In this study, two types of traits, namely tolerance and recovery traits, associated with drought tolerance were scored in biparental mapping population (BPP) and association mapping population (A-set). The results of this study revealed no or weak significant correlation between the two types of traits.

View Article and Find Full Text PDF

Background: Tomatoes (Solanum lycopersicon L.) are one of the main daily consumed vegetables in the human diet. Tomato has been classified as moderately sensitive to salinity at most stages of plant development, including seed germination, seedling (vegetative), and reproduction phases.

View Article and Find Full Text PDF

Background: Understanding the relationships between nutrition, human health and plant food source is among the highest priorities for public health. Therefore, enhancing the minerals content such as iron (Fe), zinc (Zn) and selenium (Se) in barley (Hordeum vulgare L.) grains is an urgent need to improve the nutritive value of barley grains in overcoming malnutrition and its potential consequencing.

View Article and Find Full Text PDF

Climate change is an undeniable threat to sustainable wheat production in the future as an increased temperature will significantly increase grain loss due to the increased number of generations per season of multivoltine species that are detrimental to plants. Among insects, orange wheat blossom midge (OWBM), yellow wheat blossom midge (YWBM), saddle gall midge (SGM), thrips, and frit fly (FF) are important wheat pests in the European environments, which can be managed by the development of resistant cultivars. This involves the identification, confirmation, and incorporation of insect resistance sources into new high-yielding cultivars.

View Article and Find Full Text PDF

Titanium dioxide nanoparticle (nTiO2) is one of the most produced nanoparticles worldwide. Its mechanism on crop development and performance is unclear as it is hard to predict their toxicity or benefit. Therefore, understanding the genetics of crop development under nTiO2 is a prerequisite for their applications in agriculture and crop improvement.

View Article and Find Full Text PDF

Background: , , , and are the most common genes associated with thrombophilia genetic variants, which vary among different populations and ethnic groups. Little is known about the prevalence and multiplicity of these variants in Jordan. The aim of this study was to estimate the prevalence and multiplicity of the G1691A, H1299R, 1298A>C, 677C>T, 20210G>A, and 675 4G/5G variants among healthy Jordanians.

View Article and Find Full Text PDF

Background: The future productivity of wheat (T. aestivum L.) as the most grown crop worldwide is of utmost importance for global food security.

View Article and Find Full Text PDF

Soil salinity stress causes osmotic/ionic imbalances and induces oxidative stress that causes cellular structure damage, perturbs metabolism, antioxidant system (comprising enzymatic and non-enzymatic components) and hence inhibits plant growth performance. In this study, we used genome-wide association scan (GWAS) in 174 diverse spring barley accessions which were exposed to salt stress under field conditions at the vegetative stage to uncover the genetic basis of antioxidant components and agronomic traits. High activities of enzymatic and content of non-enzymatic antioxidants were observed under salt stress compared to control conditions.

View Article and Find Full Text PDF