The conventional hydrodenitrogenation method is expensive and involves the use of catalysts and harsh procedures. In the last few years, ionic liquids (ILs) have gained attention as a promising alternative solvent for fuel oil extractive denitrogenation. In this work, the Conductor-like Screening Model for Real Solvents (COSMO-RS) was used to screen 173 potential ILs as solvents for fuel oil.
View Article and Find Full Text PDFEutectic systems design requires an in-depth understanding of their solid-liquid equilibria (SLE). Modeling SLE in eutectic systems has as prerequisites, the melting properties and activity coefficients of components in the liquid phase. Thus, due to the unavailable melting properties of thermally unstable substances, it is impossible to estimate their activity coefficients from experimental SLE data and model the SLE phase diagram of their eutectic systems.
View Article and Find Full Text PDFDeep eutectic solvents (DESs) are a class of green and tunable solvents that can be formed by mixing constituents having very low melting entropies and enthalpies. As types of materials that meet these requirements, plastic crystalline materials (PCs) with highly symmetrical and disordered crystal structures can be envisaged as promising DES constituents. In this work, three PCs, namely, neopentyl alcohol, pivalic acid, and neopentyl glycol, were studied as DES constituents.
View Article and Find Full Text PDFThe separation of benzene and cyclohexane is a challenging process in the petrochemical industry, mainly because of their close boiling points. Extractive separation of the benzene-cyclohexane mixture has been shown to be feasible, but it is important to find solvents with good extractive performance. In this work, 23 eutectic solvents (ESs) containing aromatic components were screened using the predictive COSMO-RS and their respective performance was compared with other solvents.
View Article and Find Full Text PDFDeep eutectic solvents (DES) are a new class of green solvents that have shown unique properties in several process applications. This study evaluates nonionic DES containing phenolic alcohols as solvents for carbon dioxide (CO) capture applications. Potential phenolic alcohols and the molar ratio between DES constituents were preselected for experimental investigations based on the conductor-like screening model for realistic solvation (COSMO-RS).
View Article and Find Full Text PDFHydrophobic deep eutectic solvents (DES) have recently been used as green alternatives to conventional solvents in several applications. In addition to their tunable melting temperature, the viscosity of DES can be optimized by selecting the constituents and molar ratio. This study examined the viscosity of 14 eutectic systems formed by natural substances over a wide range of temperatures and compositions.
View Article and Find Full Text PDFEutectic systems offer a wide range of new (green) designer solvents for diverse applications. However, due to the large pool of possible compounds, selecting compounds that form eutectic systems is not straightforward. In this study, a simple approach for preselecting possible candidates from a pool of substances sharing the same chemical functionality was presented.
View Article and Find Full Text PDFDeep eutectic solvents (DESs) are potential alternatives to many conventional solvents in process applications. Knowledge and understanding of solid-liquid equilibria (SLE) are essential to characterize, design, and select a DES for a specific application. The present study highlights the main aspects that should be taken into account to yield better modeling, prediction, and understanding of SLE in DESs.
View Article and Find Full Text PDF