IEEE/ACM Trans Comput Biol Bioinform
April 2021
The study of recurrent copy number variations (CNVs) plays an important role in understanding the onset and evolution of complex diseases such as cancer. Array-based comparative genomic hybridization (aCGH) is a widely used microarray based technology for identifying CNVs. However, due to high noise levels and inter-sample variability, detecting recurrent CNVs from aCGH data remains a challenging topic.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
September 2018
Genomic data is paving the way towards personalized healthcare. By unveiling genetic disease-contributing factors, genomic data can aid in the detection, diagnosis, and treatment of a wide range of complex diseases. Integrating genomic data into healthcare is riddled with a wide range of challenges spanning social, ethical, legal, educational, economic, and technical aspects.
View Article and Find Full Text PDFBackground: Analyzing Variance heterogeneity in genome wide association studies (vGWAS) is an emerging approach for detecting genetic loci involved in gene-gene and gene-environment interactions. vGWAS analysis detects variability in phenotype values across genotypes, as opposed to typical GWAS analysis, which detects variations in the mean phenotype value.
Results: A handful of vGWAS analysis methods have been recently introduced in the literature.
IEEE/ACM Trans Comput Biol Bioinform
May 2018
Computational genomics is an emerging field that is enabling us to reveal the origins of life and the genetic basis of diseases such as cancer. Next Generation Sequencing (NGS) technologies have unleashed a wealth of genomic information by producing immense amounts of raw data. Before any functional analysis can be applied to this data, read alignment is applied to find the genomic coordinates of the produced sequences.
View Article and Find Full Text PDF