Purpose: The objective of this research is to explore the applicability of machine learning and fully homomorphic encryption (FHE) in the private pathological assessment, with a focus on the inference phase of support vector machines (SVM) for the classification of confidential medical data.
Methods: A framework is introduced that utilizes the Cheon-Kim-Kim-Song (CKKS) FHE scheme, facilitating the execution of SVM inference on encrypted datasets. This framework ensures the privacy of patient data and negates the necessity of decryption during the analytical process.
Real-world healthcare data sharing is instrumental in constructing broader-based and larger clinical datasets that may improve clinical decision-making research and outcomes. Stakeholders are frequently reluctant to share their data without guaranteed patient privacy, proper protection of their datasets, and control over the usage of their data. Fully homomorphic encryption (FHE) is a cryptographic capability that can address these issues by enabling computation on encrypted data without intermediate decryptions, so the analytics results are obtained without revealing the raw data.
View Article and Find Full Text PDFSensors (Basel)
December 2021
Network Intrusion Detection Systems (NIDSs) are indispensable defensive tools against various cyberattacks. Lightweight, multipurpose, and anomaly-based detection NIDSs employ several methods to build profiles for normal and malicious behaviors. In this paper, we design, implement, and evaluate the performance of machine-learning-based NIDS in IoT networks.
View Article and Find Full Text PDF