Publications by authors named "Ahleum Chung"

Medium-chain-length polyhydroxyalkanoates (mcl-PHAs), widely used in medical area, are commonly synthesized by Pseudomonas spp. This study tries to use β-oxidation pathways engineered P. entomophila to achieve single source of a series of mcl-monomers for microbial production of PHA homopolymers.

View Article and Find Full Text PDF

3-Hydroxyalkanoic acids (3HA) are precious precursors for synthesis of value added chemicals. According to their carbon chain lengths, 3HA can be divided into two groups: short-chain-length (SCL) 3HA consisting of 3-5 carbon atoms and medium-chain-length (MCL) 3HA containing 6-14 carbon atoms. To produce MCL 3HA, a metabolic engineered pathway expressing tesB gene, a thioesterase encoding gene that has been reported to catalyze acyl-CoA to free fatty acids, was constructed in Pseudomonas entomophila L48.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHA) synthesis genes phbC and orfZ cloned from Ralstonia eutropha H16 were transformed into beta-oxidation weakened Pseudomonas putida KTOY08ΔGC, a mutant of P. putida KT2442. The recombinant P.

View Article and Find Full Text PDF

A medium-chain-length (MCL) polyhydroxyalkanoates (PHAs) producer Pseudomonas entomophila L48 was investigated for microbial production of 3-hydroxydodecanote homopolymer. Pseudomonas entomophila L48 was found to produce MCL PHA consisting of 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO), 3-hydroxydecanoate (3HD), and 3-hydroxydodecanoate (3HDD) from related carbon sources fatty acids. In this study, some of the genes encoding key enzymes in β-oxidation cycle of P.

View Article and Find Full Text PDF

A mutant termed Aeromonas hydrophila AKLF was constructed by deleting acetic acid pathway related genes pta and ackA in A. hydrophila 4AK4. Accumulation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) in A.

View Article and Find Full Text PDF

To produce extracellular chiral 3-hydroxyacyl acids (3HA) by fermentation, a novel pathway was constructed by expressing tesB gene encoding thioesterase II into Pseudomonas putida KTOY01, which was a polyhydroxyalkanoate (PHA) synthesis operon knockout mutant. 3HA mixtures of 0.35 g/l consisting of 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate (3HDD) were produced in shake-flask study using dodecanoate as a sole carbon source.

View Article and Find Full Text PDF

Pseudomonas putida KT2442 produces medium-chain-length (MCL) polyhydroxyalkanoates (PHA) consisting of 3-hydroxyhexanoate (HHx), 3-hydroxyoctanoate (HO), 3-hydroxydecanoate (HD), and 3-hydroxydodecanoate (HDD) from a wide-range of carbon sources. In this study, fadA and fadB genes encoding 3-ketoacyl-CoA thiolase and 3-hydroxyacyl-CoA dehydrogenase in P. putida KT2442 were knocked out to weaken the beta-oxidation pathway.

View Article and Find Full Text PDF

Production of R-3-hydroxybutyric acid (3HB) was observed when genes of beta-ketothiolase (PhbA), acetoacetyl CoA reductase (PhbB), and thioesterase II (TesB) were jointly expressed in Escherichia coli. TesB, generally regarded as a medium chain length acyl CoA thioesterase, was found, for the first time, to play an important role for transforming short chain length 3-hydroxybutyrate-CoA to its free fatty acid, namely, 3HB. E.

View Article and Find Full Text PDF