Metabolic acidosis (MAc)-an extracellular pH (pH) decrease caused by a [HCO ] decrease at constant [CO]-usually causes intracellular pH (pH) to fall. Here we determine the extent to which the pH decrease depends on the pH decrease vs the concomitant [HCO ] decrease. We use rapid-mixing to generate out-of-equilibrium CO/HCO solutions in which we stabilize [CO] and [HCO ] while decreasing pH (pure acidosis, pAc), or stabilize [CO] and pH while decreasing [HCO ] (pure metabolic/down, pMet↓).
View Article and Find Full Text PDFGait deficits are often persistent after stroke, and current rehabilitation methods do not restore normal gait for everyone. Targeted methods of focused gait therapy that meet the individual needs of each stroke survivor are needed. Our objective was to develop and test a combination protocol of simultaneous brain stimulation and focused stance phase training for people with chronic stroke (>6 months).
View Article and Find Full Text PDFBackground: Technologies that enhance motor learning-based therapy and are clinically deployable may improve outcome for those with neurological deficits. The MyoPro™ is a customized myoelectric upper extremity orthosis that utilizes volitionally generated weak electromyographic signals from paretic muscles to assist movement of an impaired arm. Our purpose was to evaluate MyoPro as a tool for motor learning-based therapy for individuals with chronic upper limb weakness.
View Article and Find Full Text PDFTo enable hearing, the sensory hair cell contains specialized subcellular structures at its apical region, including the actin-rich cuticular plate and circumferential band. ACF7 (actin crosslinking family protein 7), encoded by the gene (microtubule and actin crosslinking factor 1), is a large cytoskeletal crosslinking protein that interacts with microtubules and filamentous actin to shape cells. ACF7 localizes to the cuticular plate and the circumferential band in the hair cells of vertebrates.
View Article and Find Full Text PDFBackground: Assessing the prevalence and progression of hypertension among diabetics is crucial for designing appropriate strategies for successfully managing hypertension and its life-threatening complications. This study aimed to assess the prevalence of hypertension, its progression, and its determinants among type 2 diabetes mellitus (T2DM) patients in Jordan.
Materials And Methods: A cross-sectional study was conducted among 1382 Jordanian patients with T2DM in the period from January 2019 to January 2020.
Key Points: A polymorphism of human AE3 is associated with idiopathic generalized epilepsy. Knockout of AE3 in mice lowers the threshold for triggering epileptic seizures. The explanations for these effects are elusive.
View Article and Find Full Text PDFThe pathogenic process in Alzheimer's disease (AD) appears to be closely linked to the neurotoxic action of amyloid-β (Aβ) oligomers. Recent studies have shown that these oligomers bind with high affinity to the membrane-anchored cellular prion protein (PrP(C)). It has also been proposed that this binding might mediate some of the toxic effects of the oligomers.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2014
Metabolic acidosis (MAc), a decrease in extracellular pH (pHo) caused by a decrease in [HCO3 (-)]o at a fixed [CO2]o, is a common clinical condition and causes intracellular pH (pHi) to fall. Although previous work has suggested that MAc-induced decreases in pHi (ΔpHi) differ among cell types, what is not clear is the extent to which these differences are the result of the wide variety of methodologies employed by various investigators. In the present study, we evaluated the effects of two sequential MAc challenges (MAc1 and MAc2) on pHi in 10 cell types/lines: primary-cultured hippocampal (HCN) neurons and astrocytes (HCA), primary-cultured medullary raphé (MRN) neurons, and astrocytes (MRA), CT26 colon cancer, the C2C12 skeletal muscles, primary-cultured bone marrow-derived macrophages (BMDM) and dendritic cells (BMDC), Ink4a/ARF-null melanocytes, and XB-2 keratinocytes.
View Article and Find Full Text PDFIntracellular pH (pHi) regulation in the brain is important in both physiological and physiopathological conditions because changes in pHi generally result in altered neuronal excitability. In this review, we will cover 4 major areas: (1) The effect of pHi on cellular processes in the brain, including channel activity and neuronal excitability. (2) pHi homeostasis and how it is determined by the balance between rates of acid loading (J L) and extrusion (J E).
View Article and Find Full Text PDF