IEEE Trans Neural Syst Rehabil Eng
September 2022
This paper presents a fractional one-dimensional convolutional neural network (CNN) autoencoder for denoising the Electroencephalogram (EEG) signals which often get contaminated with noise during the recording process, mostly due to muscle artifacts (MA), introduced by the movement of muscles. The existing EEG denoising methods make use of decomposition, thresholding and filtering techniques. In the proposed approach, EEG signals are first transformed to orthogonal domain using Tchebichef moments before feeding to the proposed architecture.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
February 2024
Recent advances in the area of artificial intelligence and deep learning have motivated researchers to apply this knowledge to solve multipurpose applications in the area of computer vision and image processing. Super-resolution (SR), in the past few years, has produced remarkable results using deep learning methods. The ability of deep learning methods to learn the nonlinear mapping from low-resolution (LR) images to their corresponding high-resolution (HR) images leads to compelling results for SR in diverse areas of research.
View Article and Find Full Text PDFIEEE Trans Image Process
September 2021
In this paper, a new regularization term in the form of L1-norm based fractional gradient vector flow (LF-GGVF) is presented for the task of image denoising. A fractional order variational method is formulated, which is then utilized for estimating the proposed LF-GGVF. Overlapping group sparsity along with LF-GGVF is used as priors in image denoising optimization framework.
View Article and Find Full Text PDFIEEE Trans Image Process
January 2019
Structural information, in particular, the edges present in an image are the most important part that get noticed by human eyes. Therefore, it is important to denoise this information effectively for better visualization. Recently, research work has been carried out to characterize the structural information into plain and edge patches and denoise them separately.
View Article and Find Full Text PDFRecently, sparse representation has attracted a great deal of interest in many of the image processing applications. However, the idea of self-similarity, which is inherently present in an image, has not been considered in standard sparse representation. Moreover, if the dictionary atoms are not constrained to be correlated, the redundancy present in the dictionary may not improve the performance of sparse coding.
View Article and Find Full Text PDFWith the knowledge of how edges vary in the presence of a Gaussian blur, a method that uses low-order Tchebichef moments is proposed to estimate the blur parameters: sigma (σ) and size (w). The difference between the Tchebichef moments of the original and the reblurred images is used as feature vectors to train an extreme learning machine for estimating the blur parameters (σ,w). The effectiveness of the proposed method to estimate the blur parameters is examined using cross-database validation.
View Article and Find Full Text PDFAn image denoising method in moment domain has been proposed. The denoising involves the development and evaluation based on the modified nonlocal means (NLM) algorithm. It uses the similarity of the neighborhood, evaluated using Krawtchouk moments.
View Article and Find Full Text PDFIn this paper, we propose the use of geometric moments to the field of nonblind image deblurring. Using the developed relationship of geometric moments for original and blurred images, a mathematical formulation based on the Euler-Lagrange identity and variational techniques is proposed. It uses an iterative procedure to deblur the image in moment domain.
View Article and Find Full Text PDFAn equipment for calculating 2nd, 3rd, and higher order geometric moments by using accumulators, adders, subtractors, and multiplier blocks has been presented. The performance analysis of the proposed equipment with the existing systems in terms of speed and power dissipation has been carried out and has been shown that the computational time to calculate the geometric moments is reduced to half and the power dissipation is reduced by a factor of about 3 at a clock frequency of 10 MHz. The hardware has been implemented in BSIM4.
View Article and Find Full Text PDF