Publications by authors named "Ahiad Levi"

Silicon photonics holds promise for a new generation of ultrasound-detection technology, based on optical resonators, with unparalleled miniaturization levels, sensitivities, and bandwidths, creating new possibilities for minimally invasive medical devices. While existing fabrication technologies are capable of producing dense resonator arrays whose resonance frequency is pressure sensitive, simultaneously monitoring the ultrasound-induced frequency modulation of numerous resonators has remained a challenge. Conventional techniques, which are based on tuning a continuous wave laser to the resonator wavelength, are not scalable due to the wavelength disparity between the resonators, requiring a separate laser for each resonator.

View Article and Find Full Text PDF

We present an all-optical focused ultrasound transducer with a sub-millimeter aperture and demonstrate its capability for high-resolution imaging of tissue ex vivo. The transducer is composed of a wideband silicon photonics ultrasound detector and a miniature acoustic lens coated with a thin optically absorbing metallic layer used to produce laser-generated ultrasound. The demonstrated device achieves axial resolution and lateral resolutions of 12 μm and 60 μm, respectively, well below typical values achieved by conventional piezoelectric intravascular ultrasound.

View Article and Find Full Text PDF

Acousto-optics imaging (AOI) is a hybrid imaging modality that is capable of mapping the light fluence rate in deep tissue by local ultrasound modulation of the diffused photons. Since the intensity of the modulated photons is relatively low, AOI systems often rely on high-gain photodetectors, e.g.

View Article and Find Full Text PDF

One of the main challenges in miniaturizing optoacoustic technology is the low sensitivity of sub-millimeter piezoelectric ultrasound transducers, which is often insufficient for detecting weak optoacoustic signals. Optical detectors of ultrasound can achieve significantly higher sensitivities than their piezoelectric counterparts for a given sensing area but generally lack acoustic focusing, which is essential in many minimally invasive imaging configurations. In this work, we develop a focused sub-millimeter ultrasound detector composed of a silicon-photonics optical resonator and a micro-machined acoustic lens.

View Article and Find Full Text PDF

Medical ultrasound and optoacoustic (photoacoustic) imaging commonly rely on the concepts of beam-forming and tomography for image formation, enabled by piezoelectric array transducers whose element size is comparable to the desired resolution. However, the tomographic measurement of acoustic signals becomes increasingly impractical for resolutions beyond 100 µm due to the reduced efficiency of piezoelectric elements upon miniaturization. For higher resolutions, a microscopy approach is preferred, in which a single focused ultrasound transducer images the object point-by-point, but the bulky apparatus and long acquisition time of this approach limit clinical applications.

View Article and Find Full Text PDF

Acousto-optic imaging (AOI) is a non-invasive method that uses acoustic modulation to map the light fluence inside biological tissue. In many AOI implementations, ultrasound pulses are used in a time-gated measurement to perform depth-resolved imaging without the need for mechanical scanning. However, to achieve high axial resolution, it is required that ultrasound pulses with few cycles are used, limiting the modulation strength.

View Article and Find Full Text PDF

In optoacoustic tomography, negatively focused detectors have been shown to improve the tangential image resolution without sacrificing sensitivity. Since no exact inversion formulas exist for optoacoustic image reconstruction with negatively focused detectors, image reconstruction in such cases is based on using the virtual-detector approximation, in which it is assumed that the response of the negatively focused detector is identical, up to a constant time delay, to that of a point-like detector positioned in the detector's center of curvature. In this paper, we analyze the response of negatively focused spherical ultrasound detectors in three dimensions and demonstrate how their properties affect the optoacoustic reconstruction.

View Article and Find Full Text PDF