Publications by authors named "Ahana Purushothaman"

It has previously been shown that non-isothermal directional polymer crystallisation driven by local melting (Zone Annealing), has a close analogy with an equivalent isothermal crystallisation protocol. This surprising analogy is due to the low thermal conductivity of polymers-because they are poor thermal conductors, crystallisation occurs over a relatively narrow spatial domain while the thermal gradient spans a much wider scale. This separation of scales, which occurs in the limit of small sink velocity, allows replacing the crystallinity profile with a step and the temperature at the step acts as an effective isothermal crystallisation temperature.

View Article and Find Full Text PDF

It has been proposed that the nonisothermal directional crystallization of a polymer driven by a moving sink has an exact analogy to an equivalent isothermal crystallization protocol. We show that this is substantially true because polymers are poor thermal conductors; thus, polymer crystallization occurs over a relatively narrow spatial regime, while the thermal gradients created by this freezing occur over a much broader scale. This separation of scales allows us to replace the crystallization process, which is spatially distributed, with an equivalent step.

View Article and Find Full Text PDF

Microswimmers interacting with passive particles in confinement are common in many systems, e.g., spermatozoa encountering other cells or debris in the female reproductive tract or active particles interacting with polymers and tracers in microfluidic channels.

View Article and Find Full Text PDF

Recent experimental work has shown that polymer crystallisation can be used to "move" and organize nanoparticles (NP). As a first effort at modeling this situation, we consider the classical Stefan problem but with the modification that polymer crystallisation does not occur at a single temperature. Rather, the rate of crystallisation is proportional to its subcooling, and here we employ a form inspired by the classical Avrami model to describe this functional form.

View Article and Find Full Text PDF