Publications by authors named "Ahana Das"

Non-enzymatic glycation of proteins is believed to be the root cause of high dietary sugar associated pathophysiological maladies. We investigated the structural changes in protein during progression of glycation using ribosylated Bovine Serum Albumin (BSA). Non enzymatic attachment of about 45 ribose molecules to BSA resulted in gradual reduction of hydrophobicity and aggregation as indicated by red-shifted tryptophan fluorescence, reduced ANS binding and lower anisotropy of FITC-conjugated protein.

View Article and Find Full Text PDF

Extracellular fungal cellobiases develop large stable aggregates by reversible concentration driven interaction. In-vitro addition of trehalose resulted in bigger cellobiase assemblies with increased stability against heat and dilution induced dissociation. In presence of 0.

View Article and Find Full Text PDF

Trehalose is a well-known protein stabilizing osmolyte. The present study has been designed to understand the interaction of trehalose with BSA at ambient temperature. Steady state fluorescence and life-time analysis along with CD, DLS and ITC have been employed to show that trehalose causes surface-associated structural perturbation of BSA to promote its compaction.

View Article and Find Full Text PDF