Publications by authors named "Ahana Chakraborty"

Animals integrate changes in external and internal environments to generate behavior. While neural circuits detecting external cues have been mapped, less is known about how internal states like hunger are integrated into behavioral outputs. Here, we use the nematode C.

View Article and Find Full Text PDF

Ultrasound has been used to non-invasively manipulate neuronal functions in humans and other animals. However, this approach is limited as it has been challenging to target specific cells within the brain or body. Here, we identify human Transient Receptor Potential A1 (hsTRPA1) as a candidate that confers ultrasound sensitivity to mammalian cells.

View Article and Find Full Text PDF

We propose a new field theoretic method for calculating Renyi entropy of a subsystem of many interacting bosons without using replica methods. This method is applicable to dynamics of both open and closed quantum systems starting from arbitrary initial conditions. Our method identifies the Wigner characteristic of a reduced density matrix with the partition function of the whole system with a set of linear sources turned on only in the subsystem, and uses this to calculate the subsystem's Renyi entropy.

View Article and Find Full Text PDF

Recently, the possibility of inducing superconductivity for electrons in two-dimensional materials has been proposed via cavity-mediated pairing. The cavity-mediated electron-electron interactions are long range, which has two main effects: firstly, within the standard BCS-type pairing mediated by adiabatic photons, the superconducting critical temperature depends polynomially on the coupling strength, instead of the exponential dependence characterizing the phonon-mediated pairing; secondly, as we show here, the effect of photon fluctuations is significantly enhanced. These mediate novel non-BCS-type pairing processes, via nonadiabatic photons, which are not sensitive to the electron occupation but rather to the electron dispersion and lifetime at the Fermi surface.

View Article and Find Full Text PDF