Publications by authors named "Ahad N Yusufi"

Arsenic is an environmental pollutant and its contamination in drinking water poses serious world wide environmental health threats. It produces multiple adverse effects in various tissues, including the kidney. However, biochemical mechanism and renal response to its toxic insult are not completely elucidated.

View Article and Find Full Text PDF

Cisplatin (CP) an anticancer drug is known to induce nephrotoxicity, which limits its long-term clinical use. Green tea (GT), consumed since ancient times is known for its numerous health benefits. It has been shown to improve kidney functions in animal models of acute renal failure.

View Article and Find Full Text PDF

Gentamicin (GM) is an effective aminoglycoside antibiotic against severe infections but nephrotoxicity and oxidative damage limits its long term clinical use. Various strategies were attempted to ameliorate GM nephropathy but were not found suitable for clinical practice. Green tea (GT) polyphenols have shown strong chemopreventive and chemotherapeutic effects against various pathologies.

View Article and Find Full Text PDF

Uranium, the heaviest of the naturally occurring elements is widely present as environmental contaminant from natural deposits, industrial emissions and most importantly from modern weapons. Histopathological examinations revealed that uranyl nitrate (UN) exposure caused severe damage to pars recta of renal proximal tubule. However, biochemical events involved in cellular response to renal injury are not completely elucidated.

View Article and Find Full Text PDF

Gentamicin (GM), an antibiotic against life threatening bacterial infection, induces remarkable toxicity in the kidney. Histological studies have indicated that mitochondria, microsomes, lysosomes and plasma membranes of renal proximal convoluted tubules in particular are major GM targets. Despite numerous investigations, the biochemical/cellular basis of GM nephrotoxicity is not well understood.

View Article and Find Full Text PDF

Ramadan fasting is a unique model of fasting in which Muslims the world over abstain from food and water from dawn to sunset for 1 month. We hypothesized that this model of prolonged intermittent fasting would result in specific adaptive alterations in rat kidney to keep a positive balance of metabolites and inorganic phosphate (Pi). The effect of Ramadan-type fasting was studied on enzymes of carbohydrate metabolism and brush border membrane (BBM) and BBM uptake of 32Pi in different renal tissue zones in the rat model.

View Article and Find Full Text PDF

Objective: Green tea, consumed worldwide since ancient times, is considered beneficial to human health. We hypothesized that green tea would enhance antioxidant defenses and specific metabolic activities of rat intestine, liver, and kidney to improve their functions.

Methods: The effect of green tea given to rats in the diet or drinking water for 25 d was determined on blood chemistry and on activities of enzymes of carbohydrate metabolism, brush border membrane, and antioxidant defense.

View Article and Find Full Text PDF

During Ramadan, Muslims the world over abstain from food and water from dawn to sunset for a month. We hypothesised that this unique model of prolonged intermittent fasting would result in specific intestinal and liver metabolic adaptations and hence alter metabolic activities. The effect of Ramadan-type fasting was studied on enzymes of carbohydrate metabolism and the brush border membrane of intestine and liver from rat used as a model.

View Article and Find Full Text PDF

The effect of ischemia induced acute renal failure (ARF) on the transport of phosphate (Pi) after early (15-30 min) and prolonged (60 min) ischemia in the brush border membrane vesicles (BBMV) from rat renal cortex was studied. Sodium-dependent transport of Pi declined significantly and progressively due to ischemia. Western blot analysis of BBM from ischemic rats showed decreased expression of NaPi-2.

View Article and Find Full Text PDF

Cisplatin (CDDP) is widely used in the treatment of various cancers but its clinical use is associated with dose limiting nephrotoxicity. The present work was carried out to study the effect of administration of CDDP on rat renal brush border membrane (BBM) marker enzymes and inorganic phosphate (Pi) transport across BBM vesicles (BBMV). Animals were administered a single intraperitoneal dose of CDDP (6 mg/kg body weight) or normal saline and then sacrificed 2, 4, 8 and 16 days after this treatment.

View Article and Find Full Text PDF

Background: Ischemia results in rapid decline in mitochondrial electron transfer, resulting in decreased ATP levels, and fall in intracellular pH. The purpose of the study was to examine the effects of ischemia and reperfusion on the activities of enzymes of carbohydrate metabolism in rat kidney.

Methods: Ischemia was induced by occlusion of the left renal artery for specified times.

View Article and Find Full Text PDF

Although dietary fish oil supplementation has been used to prevent the progression of kidney disease in patients with IgA nephropathy, relatively few studies provide a mechanistic rationale for its use. Using an antithymocyte (ATS) model of mesangial proliferative glomerulonephritis, we recently demonstrated that fish oil inhibits mesangial cell (MC) activation and proliferation, reduces proteinuria, and decreases histologic evidence of glomerular damage. We therefore sought to define potential mechanisms underlying the antiproliferative effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), the predominant omega-3 polyunsaturated fatty acids found in fish oil, in cultured MC.

View Article and Find Full Text PDF

Recent studies in cultured cells have provided evidence that a variety of pathobiologic stimuli, including high glucose, angiotensin II, and thromboxane A(2), trigger a signaling pathway leading to autocrine induction of TGF-beta1. TGF-beta1 production through this pathway may profoundly affect cell growth, matrix synthesis, and response to injury. This study examines the role of autocrine versus exogenously added TGF-beta1 in cellular proliferation and collagen IV production, critical targets of TGF-beta1 signaling, using renal cells derived from TGF-beta1 knockout (KO) animals or wild-type (WT) controls.

View Article and Find Full Text PDF

The release of Ca(2+) from intracellular stores is a fundamental element of signaling pathways involved in regulation of vascular tone, proliferation, apoptosis, and gene expression. Studies of sea urchin eggs have led to the identification of three functionally distinct Ca(2+) signaling pathways triggered by IP3, cADPR, and NAADP. The coexistence and functional relevance of these distinct intracellular Ca(2+) release systems has only been described in a few mammalian cell types.

View Article and Find Full Text PDF