Biosensors (Basel)
April 2024
L-Lactate is an important bioanalyte in the food industry, biotechnology, and human healthcare. In this work, we report the development of a new L-lactate electrochemical biosensor based on the use of multiwalled carbon nanotubes non-covalently functionalized with avidin (MWCNT-Av) deposited at glassy carbon electrodes (GCEs) as anchoring sites for the bioaffinity-based immobilization of a new recombinant biotinylated lactate oxidase (bLOx) produced in through biotinylation. The specific binding of MWCNT-Av to bLOx was characterized by amperometry, surface plasmon resonance (SPR), and electrochemical impedance spectroscopy (EIS).
View Article and Find Full Text PDFFasciolosis is a parasitic disease considered as emerging and neglected by the WHO. Sheep are highly susceptible to this disease, and affected flocks experience decreased productivity due to increased mortality, and the reduced quality of their products, such as wool and meat. To effectively control this disease, reliable and early diagnosis is essential for making decisions regarding antiparasitic application and/or the removal of affected animals.
View Article and Find Full Text PDFL-lactate oxidase (LOX) is a biotechnologically important enzyme used in biosensors and colorimetric kits to detect lactate, a key biomarker in clinical diagnostics, sports medicine and the food industry. In this work, we produced a recombinant His-tagged Aerococcus viridans LOX (rLOX) in Escherichia coli and carried out its functional characterization for industrial applications. Our rLOX was evaluated in a colorimetric kit for human diagnostics and in an amperometric biosensor to measure the lactic acid in food products.
View Article and Find Full Text PDFFabry disease (FD) is a lysosomal storage disease caused by mutations in the gene for the α-galactosidase A (GLA) enzyme. The absence of the enzyme or its activity results in the accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3), in different tissues, leading to a wide range of clinical manifestations. More than 1000 natural variants have been described in the GLA gene, most of them affecting proper protein folding and enzymatic activity.
View Article and Find Full Text PDFWe evaluated several intein-based self-cleaving affinity tags for expression and single-step affinity chromatography purification of recombinant proteins produced in Escherichia coli. We used human growth hormone (hGH) as target protein that contains two internal disulfide bridges and an N-terminal phenylalanine. Use of N-terminal thiol-induced Sce VMA1 intein affinity tag resulted in purified hGH deficient in disulfide bonds.
View Article and Find Full Text PDFThe emergence of antibiotic resistant bacterial strains demands the development of new antimicrobial agents. In the last decades, bacteriocins have gained significant interest due to their potential application as biopreservatives in the food industry and as therapeutic agents in medicine. Recent studies project the use of these antimicrobials in agriculture as biocontrol agents.
View Article and Find Full Text PDFThe development of alternatives for the use of chemical pesticides for plant disease control is the present-day and ongoing challenge for achieving sustainable agriculture. Pseudomonas fluorescens SF4c, native strain from wheat, produces tailocins (phage-tail-like bacteriocins) with antimicrobial activity against several phytopathogenic strains. We thus investigated the efficacy of foliar application of these bacteriocins to control the bacterial-spot disease in tomato caused by Xanthomonas vesicatoria Xcv Bv5-4a.
View Article and Find Full Text PDFPhage tail-like bacteriocins, called tailocins, represent a class of protein complexes produced by a multitude of bacteria. Pseudomonas fluorescens SF4c, a strain isolated from wheat rhizosphere, produces a bacteriocin similar to phage tail-like pyocins of Pseudomonas aeruginosa. This tailocin has antimicrobial activity against several phytopathogenic strains of the genus Xanthomonas and Pseudomonas.
View Article and Find Full Text PDFPseudomonas fluorescens SF39a is a plant-growth-promoting bacterium isolated from wheat rhizosphere. In this report, we demonstrate that this native strain secretes bacteriocins that inhibit growth of phytopathogenic strains of the genera Pseudomonas and Xanthomonas. An S-type pyocin gene was detected in the genome of strain SF39a and named pys.
View Article and Find Full Text PDFPseudomonas fluorescens SF4c and SF39a, strains isolated from wheat rhizosphere, have potential applications in plant growth promotion and biocontrol of fungal diseases of crop plants. We report the draft genome sequences of SF4c and SF39a with estimated sizes of 6.5 Mb and 5.
View Article and Find Full Text PDFPseudomonas strains producing antimicrobial secondary metabolites play an important role in the biocontrol of phytopathogenic fungi. In this study, native Pseudomonas spp. isolates were obtained from the rhizosphere, endorhizosphere and bulk soil of maize fields in Córdoba (Argentina) during both the vegetative and reproductive stages of plant growth.
View Article and Find Full Text PDFR-type and F-type pyocins are high-molecular-mass bacteriocins produced by Pseudomonas aeruginosa that resemble bacteriophage tails. They contain no head structures and no DNA, and are used as defence systems. In this report, we show that Pseudomonas fluorescens SF4c, a strain isolated from the wheat rhizosphere, produces a high-molecular-mass bacteriocin which inhibits the growth of closely related bacteria.
View Article and Find Full Text PDF