Publications by authors named "Agustina Buet"

Nitrate reductase (NR) is an essential enzyme because of its role in nitrogen metabolism and in key signaling events through the generation of the reactive nitrogen species, nitric oxide (NO). In this work, we evaluated changes in endogenous NO levels during the onset of P-restriction in soybean plants (Glycine max), focusing on the possible pathways involved in its generation, namely NR and NO synthase like activity, NOS, and the subsequent role of NR during low P-acclimation. During the first 96h of P-starvation NO levels increased in the leaves.

View Article and Find Full Text PDF

Phosphate (P) is characterized by its low availability and restricted mobility in soils, and also by a high redistribution capacity inside plants. In order to maintain P homeostasis in nutrient restricted conditions, plants have developed mechanisms which enable P acquisition from the soil solution, and an efficient reutilization of P already present in plant cells. Nitric oxide (NO) is a bioactive molecule with a plethora of functions in plants.

View Article and Find Full Text PDF

Leaf senescence is characterized by massive degradation of chloroplast proteins, yet the protease(s) involved is(are) not completely known. Increased expression and/or activities of serine, cysteine, aspartic, and metalloproteases were detected in senescing leaves, but these studies have not provided information on the identities of the proteases responsible for chloroplast protein breakdown. Silencing some senescence-associated proteases has delayed progression of senescence symptoms, yet it is still unclear if these proteases are directly involved in chloroplast protein breakdown.

View Article and Find Full Text PDF

Plants under conditions of essential mineral deficiency trigger signaling mechanisms that involve common components. Among these components, nitric oxide (NO) has been identified as a key participant in responses to changes in nutrient availability. Usually, nutrient imbalances affect the levels of NO in specific plant tissues, via modification of its rate of synthesis or degradation.

View Article and Find Full Text PDF

Improving phosphorus (P) acquisition and utilization in crops is of great importance in order to achieve a good plant nutritional state and maximize biomass production while minimizing the addition of fertilizers, and the concomitant risk of eutrophication. This study explores to which extent key processes involved in P-acquisition, and other acclimation mechanisms to low P supply in maize (Zea mays L.) plants, are affected by the addition of a nitric oxide (NO) donor (S-nitrosoglutathione, GSNO).

View Article and Find Full Text PDF

Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition.

View Article and Find Full Text PDF

The effect of addition of the nitric oxide donor S-nitrosoglutathione (GSNO) on the Zn nutritional status was evaluated in hydroponically-cultured wheat plants (Triticum aestivum cv. Chinese Spring). Addition of GSNO in Zn-deprived plants did not modify biomass accumulation but accelerated leaf senescence in a mode concomitant with accelerated decrease of Zn allocation to shoots.

View Article and Find Full Text PDF

Most of the elements involved in the integration of signals of low external K(+)-supply into a physiological response pathway remain essentially unknown. The aim of this work was to study the influence exerted by DELLA proteins, which are known to be key components for the control of growth, on plant responses during K(+) deprivation in wheat (Triticum aestivum) by using two sets of near-isogenic lines (NILs) in the Maringa and April Bearded cultivars. After K(+) shortage, the NILs of both cultivars containing the Rht-B1b,Rht-D1b alleles, which encode altered function DELLA proteins, displayed either a slight or no decrease in chlorophyll content, in contrast to the sharp decrease observed in the NILs having the wild type alleles (Rht-B1a,Rht-D1a).

View Article and Find Full Text PDF

This work was aimed to investigate nitrosyl-Fe complexes formation by reaction of endogenous ligands and Fe, in sorghum embryonic axes exposed to NO-donors. Electron paramagnetic resonance (EPR) was employed to detect the presence of nitrosyl-Fe complexes in plant embryos, as well as changes in labile iron pool (LIP). Nitrosyl-Fe complexes formation was detected in sorghum embryonic axes homogenates incubated in vitro in the presence of 1 mM of NO donors: diethylenetriamine NONOate (DETA NONOate), S-nitrosoglutathione (GSNO) and sodium nitroprusside (SNP).

View Article and Find Full Text PDF