Phys Chem Chem Phys
November 2024
Methyl radicals in their ground state (CH(X)) were created and excited by two- and one- color excitation schemes for CHBr and CHI, respectively, to record (2+1) REMPI spectra of CH for resonant transitions to the Rydberg states CH**(pA); = 3, 4. Various new and previously observed vibrational bands were identified and analyzed to gain energetic information for the Rydberg states. Particular emphasis was placed on analysis of the rotational structured spectra centered at 70 648 and 60 700 cm, due to transitions from to and for both Rydberg states, respectively.
View Article and Find Full Text PDFIodomethane yields ten fragment ions after valence photoionization, in part by multiple dissociation pathways for each, thanks to a plethora of electronic states available in the parent ion as well as in the fragments. The comprehensive breakdown diagram from 11 eV to the double ionization onset, , 26.7 eV, is recorded at high resolution using double imaging photoelectron photoion coincidence spectroscopy with synchrotron vacuum ultraviolet radiation.
View Article and Find Full Text PDFMass resolved REMPI spectra and electron and ion velocity map images were recorded for REMPI of acetylene in the case of two-photon resonant excitations to low lying 3p and 4p Rydberg states. Combined data analysis of ion signal intensities and electron and ion kinetic energy release distribution revealed multiphoton-fragmentation processes in terms of photodissociation and photoionization channels to form the molecular ion, CH and the fragment ions H, C, CH, CH, C and CH. The ratio of fragment ion formation over the parent ion formation increases with excitation energy.
View Article and Find Full Text PDFCoincidence ion pair production (I + I) (cipp) spectra of I were recorded in a double imaging coincidence experiment in the one-photon excitation region of 71 600-74 000 cm. The I + I coincidence signal shows vibrational band head structure corresponding to iodine molecule Rydberg states crossing over to ion-pair (II) potential curves above the dissociation limit. The band origin (), vibrational wavenumber () and anharmonicity constants () were determined for the identified Rydberg states.
View Article and Find Full Text PDFPhys Chem Chem Phys
March 2022
Mass resolved multiphoton ionization data for two-photon resonant excitations (REMPI) in the 69 000-79 000 cm region were recorded for HI. REMPI spectra of fragment and molecular ions were derived from the data and analysed to obtain information relevant to the state interactions, energetics and photofragmentation processes of intermediate Rydberg and ion-pair states (HI**). Spectral perturbations observed as line shifts and intensity anomalies acted complementarily to demonstrate the effects of the state interactions.
View Article and Find Full Text PDFCoincidence ion pair production (cipp) spectra of F were recorded on the DELICIOUS III coincidence spectrometer in the one-photon excitation region of 125 975-126 210 cm. The F + F signal shows a rotational band head structure, corresponding to F Rydberg states crossing over to the ion pair production surface. Spectral simulation and quantum defect analysis allowed the characterization of five new molecular Rydberg states (F**): one Π and four Σ states.
View Article and Find Full Text PDFMass resolved REMPI spectra, as well as CHand I ion and photoelectron images, were recorded for two-photon resonant excitations of CHI via s, p and d Rydberg states (CHI**) in the excitation region of 55 700 to 70 000 cm. Photoelectron (PE) and ion kinetic energy release spectra (KERs) were derived from the images. The data revealed that after the two-photon resonant excitation, an additional photon is absorbed to form one or more superexcited state(s) (CHI), followed by branching into three pathways.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2019
Mass resolved multiphoton ionization data for two-photon resonant excitations (REMPI) in the region of 74 000-75 000 cm-1 were recorded for HI. Spectra structures of fragment and molecular ions derived from the data were analyzed to derive information relevant to the energetics and state mixing of ion-pair and Rydberg resonance states as well as for the excitation dynamics. Four new ion-pair vibrational states (V1Σ+(v' = m + i); i = 16-19) and two Rydberg states (j3Σ-(0+; v' = 1) and N1Π1(v' = 2)) were identified and characterized.
View Article and Find Full Text PDFTwo-color pump-probe experiments were performed to explore the multiphoton dynamics of CH3Br at high excitation energies of 8-10 eV, involving two-photon resonant excitations to a number of np and nd Rydberg states (pump) followed by REMPI detection (probe) of the Br, Br* and CH3(X) photoproducts. Slice images of Br+ and CH3+ ions were recorded in pump-only, probe-only and pump and probe experiments. Kinetic-energy release spectra (KERs), as well as spatial anisotropy parameters, were extracted from the images to identify the processes and the dynamics involved.
View Article and Find Full Text PDFThe multiphoton dynamics of CH3Br were probed by Mass Resolved MultiPhoton Ionization (MR-MPI), Slice Imaging and Photoelectron Imaging in the two-photon excitation region of 66 000 to 80 000 cm-1. Slice images of the CH3+ and Br+ photoproducts of ten two-photon resonant transitions to np and nd Rydberg states of the parent molecule were recorded. CH3+ ions dominate the mass spectra.
View Article and Find Full Text PDFVelocity map imaging (VMI) data and mass resolved REMPI spectra are complementarily utilized to elucidate the involvement of homogeneous multistate interactions in excited state dynamics of HBr. The HΣ(v' = 0) and EΣ(v' = 1) Rydberg states and the VΣ(v'= m + 7) and VΣ(v'= m + 8) ion-pair states are explored as a function of rotational quantum number in the two-photon excitation region of 79 100-80 700 cm. H and Br images were recorded by one- as well as two-color excitation schemes.
View Article and Find Full Text PDFThe threshold photoelectron spectra and threshold photoionization mass spectra of 1-halogenated-1-silacyclohexanes, for the halogens X = F, Cl, Br, and I, have been obtained using synchrotron vacuum ultraviolet radiation and photoelectron photoion coincidence spectroscopy. As confirmed by a similar ionization onset and density functional theory molecular orbitals, the ionization to the ground state is dominated by electron removal from the silacyclohexane ring for X = F, Cl, and Br, and from the halogen lone pair for X = I. The breakdown diagrams show that the dissociative photoionization mechanism is also different for X = I.
View Article and Find Full Text PDFAnalysis of mass resolved spectra as well as velocity map images derived from resonance enhanced multiphoton ionization (REMPI) of HBr via resonance excitations to mixed Rydberg (6pπ Σ(v' = 0)) and valence (ion-pair) (V Σ(v' = m + 17)) states allows characterization of the effect of a triplet-to-singlet state interaction on further photoexcitation and photoionization processes. The analysis makes use of rotational spectra line shifts, line intensity alterations, kinetic energy release spectra as well as angular distributions. Energy-level-dependent state mixing of the resonance excited states is quantified and photoexcitation processes, leading to H formation, are characterized in terms of the states and fragmentation processes involved, depending on the state mixing.
View Article and Find Full Text PDFEver since the pioneering work by Herzberg and Johns in 1969 (The Astrophysical Journal, 1969, 158, 399) the spectral assignment and the energetics of the fundamental molecular fragment CH, in the region of 63 000-65 000 cm(-1) (7.81-8.06 eV), have remained a puzzle to a large extent.
View Article and Find Full Text PDFHigh energy regions of molecular electronic states are largely characterized by the nature and involvement of Rydberg states. Whereas there are a number of observed dynamical processes that are due to interactions between Rydberg and valence states, reports on the corresponding effect of Rydberg-Rydberg state interaction in the literature are scarce. Here we report a detailed characterization of the effects of interactions between two Rydberg states on photofragmentation processes, for a hydrogen halide molecule.
View Article and Find Full Text PDFHydrogen iodide, a Hund's case (c) molecule, serves as a benchmark compound for studying rich molecular state interactions between Rydberg and valence states as well as between Rydberg states at high energies (72,300-74,600 cm(-1)) by mass resolved resonance enhanced multiphoton ionization (REMPI). Perturbations in the spectra appearing as deformations in line-positions, line-intensities, and linewidths are found to be either due to near-degenerate or non-degenerate interactions, both homogeneous and heterogeneous in nature. Perturbation analyses allow indirect observation as well as characterization of "hidden states" to some extent.
View Article and Find Full Text PDFPhotoexcitation dynamics of the E((1)Σ(+)) (v' = 0) Rydberg state and the V((1)Σ(+)) (v') ion-pair vibrational states of HBr are investigated by velocity map imaging (VMI). H(+) photoions, produced through a number of vibrational and rotational levels of the two states were imaged and kinetic energy release (KER) and angular distributions were extracted from the data. In agreement with previous work, we found the photodissociation channels forming H*(n = 2) + Br((2)P3/2)/Br*((2)P1/2) to be dominant.
View Article and Find Full Text PDFMass resolved resonance enhanced multiphoton ionization data for hydrogen iodide (HI), for two-photon resonance excitation to Rydberg and ion-pair states in the 69,600-72,400 cm(-1) region were recorded and analyzed. Spectral perturbations due to homogeneous and heterogeneous interactions between Rydberg and ion-pair states, showing as deformations in line-positions, line-intensities, and line-widths, were focused on. Parameters relevant to photodissociation processes, state interaction strengths and spectroscopic parameters for deperturbed states were derived.
View Article and Find Full Text PDFMass-resolved (2 + n) resonance-enhanced multiphoton ionization (REMPI) spectra of CH2Br2 in the two-photon resonance excitation region from 71 200 to 82 300 cm(-1) were recorded and analyzed. Spectral structures allowed characterization of new molecular Rydberg states. C*((1)D2) was found to be an important intermediate in the photodissociation processes.
View Article and Find Full Text PDFThe molecular structures of axial and equatorial conformers of -CHSiHX (X = Cl, Br, I) as well as the thermodynamic equilibrium between these species was investigated by means of gas electron diffraction, dynamic nuclear magnetic resonance, temperature-dependent Raman spectroscopy, and quantum-chemical calculations applying CCSD(T), MP2, and DFT methods. According to the experimental and calculated results, all three compounds exist as a mixture of two chair conformers of the six-membered ring. The two chair forms of symmetry differ in the axial or equatorial position of the X atom.
View Article and Find Full Text PDF(2 + n) resonance enhanced multiphoton ionization mass spectra for resonance excitations to diabatic E(1)Σ(+) (v') Rydberg and V (1)Σ(+) (v') ion-pair states (adiabatic B(1)Σ(+)(v') states) of H(i)Cl (i = 35,37) and H(i)Br (i = 79,81) were recorded as a function of excitation wavenumber (two-dimensional REMPI). Simulation analyses of ion signal intensities, deperturbation analysis of line shifts and interpretations of line-widths are used to derive qualitative and quantitative information concerning the energetics of the states, off-resonance interactions between the E states and V states, closest in energy as well as on predissociation channels. Spectroscopic parameters for the E(1)Σ(+) (v')(v' = 1) for H(35)Cl and v' = 0 for H(79)Br states, interaction strengths for E - V state interactions and parameters relevant to dissociation of the E states are derived.
View Article and Find Full Text PDFMass spectra were recorded for one-colour resonance enhanced multiphoton ionization (REMPI) of H(i)Br (i = 79, 81) for the two-photon resonance excitation region 79,040-80,300 cm(-1) to obtain two-dimensional REMPI data. The data were analysed in terms of rotational line positions, intensities, and line-widths. Quantitative analysis of the data relevant to near-resonance interactions between the F(1)Δ(2)(v' = 1) and V(1)Σ(+)(v' = m + 7) states gives interaction strengths, fractional state mixing, and parameters relevant to dissociation of the F state.
View Article and Find Full Text PDFInternal energy selected bromofluoromethane cations were prepared and their internal energy dependent fragmentation pathways were recorded by imaging photoelectron photoion coincidence spectroscopy (iPEPICO). The first dissociation reaction is bromine atom loss, which is followed by fluorine atom loss in CF(3)Br and CF(2)Br(2) at higher energies. Accurate 0 K appearance energies have been obtained for these processes, which are complemented by ab initio isodesmic reaction energy calculations.
View Article and Find Full Text PDFMass spectra were recorded for (2 + n) resonance enhanced multiphoton ionization (REMPI) of HCl as a function of resonance excitation energy in the 88865-89285 cm(-1) region to obtain two-dimensional REMPI data. Band spectra due to two-photon resonance transitions to number of Rydberg states (Ω' = 0, 1, and 2) and the ion-pair state V((1)Σ(+)(Ω' = 0)) for H(35)Cl and H(37)Cl were identified, assigned, and analyzed with respect to Rydberg to ion-pair interactions. Perturbations show as line-, hence energy level-, shifts, as well as ion signal intensity variations with rotational quantum numbers, J', which, together, allowed determination of parameters relevant to the nature and strength of the state interactions as well as dissociation and ionization processes.
View Article and Find Full Text PDF(2+n) resonance enhanced multiphoton ionization (REMPI) spectra of CH(3)Br for the masses H(+), CH(m)(+), (i)Br(+), H(i)Br(+), and CH(m)(i)Br(+) (m = 0-3; i = 79, 81) have been recorded in the 66 000-81 000 cm(-1) resonance energy range. Signals due to resonance transitions from the zero vibrational energy level of the ground state CH(3)Br to a number of Rydberg states [Ω(c)]nl;ω (Ω(c) = 3/2, 1/2; ω = 0, 2; l = 1(p), 2(d)) and various vibrational states were identified. C((3)P) and C*((1)D) atom and HBr intermediate production, detected by (2+1) REMPI, most probably is due to photodissociation of CH(3)Br via two-photon excitations to Rydberg states followed by an unusual breaking of four bonds and formation of two bonds to give the fragments H(2) + C/C* + HBr prior to ionization.
View Article and Find Full Text PDF