This paper describes an origami-inspired self-folding method to form three-dimensional (3D) microstructures of co-cultured cells. After a confluent monolayer of fibroblasts (NIH/3T3 cells) with loaded hepatocytes (HepG2 cells) was cultured onto two-dimensional (2D) microplates, degradation of the alginate sacrificial layer in the system by addition of alginate lyase triggered NIH/3T3 cells to self-fold the microplates around HepG2 cells, and then 3D cell co-culture microstructures were spontaneously formed. Using this method, we can create a large number of 3D cell co-culture microstructures swiftly with ease in the same time.
View Article and Find Full Text PDFChanges in the cytoskeletal organization within cells can be characterized by large spatial and temporal variations in rheological properties of the cell (e.g., the complex shear modulus G).
View Article and Find Full Text PDFThe research on reflectance distributions in computer-generated holograms (CGHs) is particularly sparse, and the textures of materials are not expressed. Thus, we propose a method for calculating reflectance distributions in CGHs that uses the finite-difference time-domain method. In this method, reflected light from an uneven surface made on a computer is analyzed by finite-difference time-domain simulation, and the reflected light distribution is applied to the CGH as an object light.
View Article and Find Full Text PDFRev Sci Instrum
September 2009
We have developed holders for scanning tunneling microscopy tips that can be used for in situ treatments of the tips, such as electron bombardment (EB) heating, ion sputtering, and the coating of magnetic materials. The holders can be readily installed into the transfer paths and do not require any special type of base stages. Scanning electron microscopy is used to characterize the tip apex after EB heating.
View Article and Find Full Text PDFWe fabricated a pH-sensitive device on a glass substrate based on properties of carbon nanotubes. Nanotubes were immobilized specifically on chemically modified areas on a substrate followed by deposition of metallic source and drain electrodes on the area. Some nanotubes connected the source and drain electrodes.
View Article and Find Full Text PDF