Purpose: Transdermal Drug Delivery System (TDDS) offers a promising alternative for delivering poorly soluble drugs, challenged by the stratum corneum's barrier effect, which restricts the pool of drug candidates suitable for TDDS. This study aims to establish a delivery platform specifically for highly lipophilic drugs requiring high doses (log P > 5, dose > 10 mg/kg/d), to improve their intradermal delivery and enhance solubility.
Methods: Cannabidiol (CBD, log P = 5.
To achieve the painless administration of interferon alpha 1b (rhIFNα-1b), a double-layered soluble polymer microneedle (MN) patch loaded with rhIFNα-1b was used to deliver rhIFNα-1b transdermally. The solution containing rhIFNα-1b was concentrated in the MN tips under negative pressure. The MNs punctured the skin and delivered rhIFNα-1b to the epidermis and dermis.
View Article and Find Full Text PDFTo reduce mucosal damage in the gastrointestinal tract caused by aspirin, aspirin microcrystals were loaded in soluble polymeric microneedle (MN) tips. Aspirin was prepared into aspirin microcrystals by jet milling. Aspirin microcrystals with particle sizes of 0.
View Article and Find Full Text PDFAs low-temperature storage and transportation of peptides require high costs, improving the dosage form of peptides can reduce costs. We developed a thermostable and fast-releasing stratified dissolving microneedle (SDMN) system for delivering exenatide (EXT) to patients with type 2 diabetes. Among the tested polymers, dextran and polyvinyl alcohol (PVA) were the best at stabilizing EXT under high-temperature storage for 9 weeks.
View Article and Find Full Text PDFTo reduce mucosal damage in the gastrointestinal tract caused by aspirin, we developed a dissolvable polymeric microneedle (MN) patch loaded with aspirin. Biodegradable polymers provide mechanical strength to the MNs. The MN tips punctured the cuticle of the skin and dissolved when in contact with the subcutaneous tissue.
View Article and Find Full Text PDFThe aim of this study was to prepare dissolving microneedles (DMNs) patches containing tranexamic acid (TA) for the treatment of melasma. Polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) were preferred as matrix materials through the compatibility experiment. In the in vitro permeation study, the transdermal amount of TA was significantly promoted through dissolving microneedles with the cumulative release was 44.
View Article and Find Full Text PDF