Publications by authors named "Aguirre De Cubas"

Regulatory T cells (Tregs) are promising cellular therapies to induce immune tolerance in organ transplantation and autoimmune disease. The success of chimeric antigen receptor (CAR) T cell therapy for cancer has sparked interest in using CARs to generate antigen-specific Tregs. Here, we compared CAR with endogenous T cell receptor (TCR)/CD28 activation in human Tregs.

View Article and Find Full Text PDF

Most children with medulloblastoma (MB) achieve remission, but some face very aggressive metastatic tumors. Their dismal outcome highlights the critical need to advance therapeutic approaches that benefit such high-risk patients. Minnelide, a clinically relevant analog of the natural product triptolide, has oncostatic activity in both preclinical and early clinical settings.

View Article and Find Full Text PDF
Article Synopsis
  • PDAC is the most common and lethal pancreatic cancer, marked by high levels of HSP70, which relates to poor patient outcomes and aggressive tumor behavior.
  • HSP70's overexpression in PDAC disrupts mitochondrial function and promotes cancer cell survival, while its inhibition leads to mitochondrial dysfunction and programmed cell death.
  • Targeting HSP70, especially in combination with autophagy inhibitors like hydroxychloroquine, could be a promising strategy for treating HSP70-driven PDAC.
View Article and Find Full Text PDF

Unlabelled: Chronic lymphocytic leukemia (CLL) cell survival and growth is fueled by the induction of B-cell receptor (BCR) signaling within the tumor microenvironment (TME) driving activation of NFκB signaling and the unfolded protein response (UPR). Malignant cells have higher basal levels of UPR posing a unique therapeutic window to combat CLL cell growth using pharmacologic agents that induce accumulation of misfolded proteins. Frontline CLL therapeutics that directly target BCR signaling such as Bruton tyrosine kinase (BTK) inhibitors (e.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores the use of chimeric antigen receptor (CAR) Tregs as a potential therapy for immune tolerance in organ transplantation and autoimmune diseases, comparing them to traditional TCR/CD28 activated Tregs.
  • - CAR Tregs demonstrated higher cytotoxicity and less suppression of antigen-presenting cells and effector T cells, along with significant activation of gene programs associated with effector cells.
  • - The research suggests that by modifying the affinity of CAR antigens, it is possible to influence the inflammatory response and gene expression of CAR Tregs, indicating the potential for tailored CAR designs to improve their therapeutic effect.
View Article and Find Full Text PDF

Renal cell carcinoma (RCC) comprises a group of malignancies arising from the kidney with unique tumour-specific antigen (TSA) signatures that can trigger cytotoxic immunity. Two classes of TSAs are now considered potential drivers of immunogenicity in RCC: small-scale insertions and deletions (INDELs) that result in coding frameshift mutations, and activation of human endogenous retroviruses. The presence of neoantigen-specific T cells is a hallmark of solid tumours with a high mutagenic burden, which typically have abundant TSAs owing to non-synonymous single nucleotide variations within the genome.

View Article and Find Full Text PDF

The AURORA US Metastasis Project was established with the goal to identify molecular features associated with metastasis. We assayed 55 females with metastatic breast cancer (51 primary cancers and 102 metastases) by RNA sequencing, tumor/germline DNA exome and low-pass whole-genome sequencing and global DNA methylation microarrays. Expression subtype changes were observed in ~30% of samples and were coincident with DNA clonality shifts, especially involving HER2.

View Article and Find Full Text PDF

Recently, we reported that expression of endogenous retroviruses (ERVs) is associated with response to immune checkpoint blockade (ICB) in renal cell carcinoma (RCC). We show that decitabine, a DNA hypomethylating agent, activates transposable element (TE) expression (LINE1 and ERVs ERV3-2 and ERV4700) and antiviral signaling to potentially enhance response to ICB in kidney cancer cell lines and primary cells. KO of RIGI and MDA5 dsRNA sensors attenuated activation of antiviral signaling associated with DNA hypomethylation, and RIGI and MDA5 IPs showed increased ERV binding with decitabine treatment.

View Article and Find Full Text PDF

: Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors that present variable outcomes. To date, no effective therapies or reliable prognostic markers are available for patients who develop metastatic PPGL (mPPGL). Our aim was to discover robust prognostic markers validated through models, and define specific therapeutic options according to tumor genomic features.

View Article and Find Full Text PDF

Activated T cells differentiate into functional subsets with distinct metabolic programs. Glutaminase (GLS) converts glutamine to glutamate to support the tricarboxylic acid cycle and redox and epigenetic reactions. Here, we identify a key role for GLS in T cell activation and specification.

View Article and Find Full Text PDF

Human endogenous retroviruses (hERVs) are remnants of exogenous retroviruses that have integrated into the genome throughout evolution. We developed a computational workflow, hervQuant, which identified more than 3,000 transcriptionally active hERVs within The Cancer Genome Atlas (TCGA) pan-cancer RNA-Seq database. hERV expression was associated with clinical prognosis in several tumor types, most significantly clear cell renal cell carcinoma (ccRCC).

View Article and Find Full Text PDF

Although a subset of clear cell renal cell carcinoma (ccRCC) patients respond to immune checkpoint blockade (ICB), predictors of response remain uncertain. We investigated whether abnormal expression of endogenous retroviruses (ERVs) in tumors is associated with local immune checkpoint activation (ICA) and response to ICB. Twenty potentially immunogenic ERVs (πERVs) were identified in ccRCC in The Cancer Genome Atlas data set, and tumors were stratified into 3 groups based on their expression levels.

View Article and Find Full Text PDF

Renal cell carcinomas (RCCs) are a diverse set of malignancies that have recently been shown to harbour mutations in a number of chromatin modifier genes - including PBRM1, SETD2, BAP1, KDM5C, KDM6A, and MLL2 - through high-throughput sequencing efforts. Current research focuses on understanding the biological activities that chromatin modifiers employ to suppress tumorigenesis and on developing clinical approaches that take advantage of this knowledge. Unsurprisingly, several common themes unify the functions of these epigenetic modifiers, particularly regulation of histone post-translational modifications and nucleosome organization.

View Article and Find Full Text PDF

Loss of the short arm of chromosome 3 (3p) occurs early in >95% of clear cell renal cell carcinoma (ccRCC). Nearly ubiquitous 3p loss in ccRCC suggests haploinsufficiency for 3p tumor suppressors as early drivers of tumorigenesis. We previously reported methyltransferase , which trimethylates H3 histones on lysine 36 (H3K36me3) and is located in the 3p deletion, to also trimethylate microtubules on lysine 40 (αTubK40me3) during mitosis, with αTubK40me3 required for genomic stability.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is not a single disease, but several histologically defined cancers with different genetic drivers, clinical courses, and therapeutic responses. The current study evaluated 843 RCC from the three major histologic subtypes, including 488 clear cell RCC, 274 papillary RCC, and 81 chromophobe RCC. Comprehensive genomic and phenotypic analysis of the RCC subtypes reveals distinctive features of each subtype that provide the foundation for the development of subtype-specific therapeutic and management strategies for patients affected with these cancers.

View Article and Find Full Text PDF

Von Hippel-Lindau (VHL) gene mutations induce neural tissue hemangioblastomas, as well as highly vascularized clear cell renal cell carcinomas (ccRCCs). Pathological vessel remodeling arises from misregulation of HIFs and VEGF, among other genes. Variation in disease penetrance has long been recognized in relation to genotype.

View Article and Find Full Text PDF

Although renal medullary carcinoma (RMC) is a rare subtype of kidney cancer, it is particularly devastating in that it is nearly uniformly lethal. No established guidelines exist for the diagnosis and management of RMC. In April 2016, a panel of experts developed clinical guidelines on the basis of a literature review and consensus statements.

View Article and Find Full Text PDF

We report a comprehensive molecular characterization of pheochromocytomas and paragangliomas (PCCs/PGLs), a rare tumor type. Multi-platform integration revealed that PCCs/PGLs are driven by diverse alterations affecting multiple genes and pathways. Pathogenic germline mutations occurred in eight PCC/PGL susceptibility genes.

View Article and Find Full Text PDF

CD4 effector T cells (T cells) and regulatory T cells (T cells) undergo metabolic reprogramming to support proliferation and immunological function. Although signaling via the lipid kinase PI(3)K (phosphatidylinositol-3-OH kinase), the serine-threonine kinase Akt and the metabolic checkpoint kinase complex mTORC1 induces both expression of the glucose transporter Glut1 and aerobic glycolysis for T cell proliferation and inflammatory function, the mechanisms that regulate T cell metabolism and function remain unclear. We found that Toll-like receptor (TLR) signals that promote T cell proliferation increased PI(3)K-Akt-mTORC1 signaling, glycolysis and expression of Glut1.

View Article and Find Full Text PDF

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy associated with Notch pathway mutations. While both normal activated and leukemic T cells can utilize aerobic glycolysis to support proliferation, it is unclear to what extent these cell populations are metabolically similar and if differences reveal T-ALL vulnerabilities. Here we show that aerobic glycolysis is surprisingly less active in T-ALL cells than proliferating normal T cells and that T-ALL cells are metabolically distinct.

View Article and Find Full Text PDF

Context: Mutational inactivation of the succinate dehydrogenase (SDH) complex is a well-described cause of tumor development in pheochromocytomas/paragangliomas (PPGLs) and gastrointestinal stromal tumors (GISTs). Epigenetic inactivation of the SDHC gene is a more recently discovered phenomenon, which so far has only been described in GISTs and PPGLs from patients with Carney triad syndrome.

Case Description: A 33-year-old patient presented with two abdominal paragangliomas (PGLs) and an adrenocortical adenoma.

View Article and Find Full Text PDF

Unlabelled: The presence of germline mutations affecting the MYC-associated protein X (MAX) gene has recently been identified as one of the now 11 major genetic predisposition factors for the development of hereditary pheochromocytoma and/or paraganglioma. Little is known regarding how missense variants of unknown significance (VUS) in MAX affect its pivotal role in the regulation of the MYC/MAX/MXD axis. In the present study, we propose a consensus computational prediction based on five "state-of-the-art" algorithms.

View Article and Find Full Text PDF

Purpose: Pheochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumors, associated with highly variable postoperative evolution. The scarcity of reliable PPGL prognostic markers continues to complicate patient management. In this study, we explored genome-wide DNA methylation patterns in the context of PPGL malignancy to identify novel prognostic markers.

View Article and Find Full Text PDF