Publications by authors named "Agostina Puppo"

Inherited retinopathies (IR) are common untreatable blinding conditions. Most of them are inherited as monogenic disorders, due to mutations in genes expressed in retinal photoreceptors (PR) and in retinal pigment epithelium (RPE). The retina's compatibility with gene transfer has made transduction of different retinal cell layers in small and large animal models via viral and non-viral vectors possible.

View Article and Find Full Text PDF

Sorting of specific mRNAs to particular cellular locations and regulation of their translation is an essential mechanism underlying cell polarization. The transport of RNAs by kinesins and dyneins has been clearly established in several cell models, including neurons in culture. A similar role appears to exist in higher eukaryotes for the myosins.

View Article and Find Full Text PDF

Gene transfer to both cone and rod photoreceptors (PRs) is essential for gene therapy of inherited retinal degenerations that are caused by mutations in genes expressed in both PR types. Vectors based on the adeno-associated virus (AAV) efficiently transduce PRs of different species. However, these are predominantly rods and little is known about the ability of the AAV to transduce cones in combination with rods.

View Article and Find Full Text PDF

Recombinant adeno-associated viral (AAV) vectors are known to safely and efficiently transduce the retina. Among the various AAV serotypes available, AAV2/5 and 2/8 are the most effective for gene transfer to photoreceptors (PR), which are the most relevant targets for gene therapy of inherited retinal degenerations. However, the search for novel AAV serotypes with improved PR transduction is ongoing.

View Article and Find Full Text PDF

Background: Gene transfer using adeno-associated viral (AAV) vectors has been successfully applied in the retina for the treatment of inherited retinal dystrophies. Recently, microRNAs have been exploited to fine-tune transgene expression improving therapeutic outcomes. Here we evaluated the ability of retinal-expressed microRNAs to restrict AAV-mediated transgene expression to specific retinal cell types that represent the main targets of common inherited blinding conditions.

View Article and Find Full Text PDF

Background: Fertilization of echinoderm eggs is accompanied by dynamic changes of the actin cytoskeleton and by a drastic increase of cytosolic Ca(2+). Since the plasma membrane-enriched phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) serves as the precursor of inositol 1,4,5 trisphosphate (InsP(3)) and also regulates actin-binding proteins, PIP2 might be involved in these two processes.

Methodology/principal Findings: In this report, we have studied the roles of PIP2 at fertilization of starfish eggs by using fluorescently tagged pleckstrin homology (PH) domain of PLC-δ1, which has specific binding affinity to PIP2, in combination with Ca(2+) and F-actin imaging techniques and transmission electron microscopy.

View Article and Find Full Text PDF

Background: Starfish oocytes are arrested at the first prophase of meiosis until they are stimulated by 1-methyladenine (1-MA). The two most immediate responses to the maturation-inducing hormone are the quick release of intracellular Ca(2+) and the accelerated changes of the actin cytoskeleton in the cortex. Compared with the later events of oocyte maturation such as germinal vesicle breakdown, the molecular mechanisms underlying the early events involving Ca(2+) signaling and actin changes are poorly understood.

View Article and Find Full Text PDF

Ca2+ is the most universal second messenger in cells from the very first moment of fertilization. In all animal species, fertilized eggs exhibit massive mobilization of intracellular Ca2+ to orchestrate the initial events of development. Echinoderm eggs have been an excellent model system for studying fertilization and the cell cycle due to their large size and abundance.

View Article and Find Full Text PDF

Before successful fertilization can occur, oocytes must undergo meiotic maturation. In starfish, this can be achieved in vitro by applying 1-methyladenine (1-MA). The immediate response to 1-MA is the fast Ca2+ release in the cell cortex.

View Article and Find Full Text PDF

Periaxoplasmic ribosomal plaques (PARPs) are periodic structural formations containing ribosomes, which are likely cortical sites of translation along myelinated fibers. beta-actin mRNA, and its trans-acting binding factor, zipcode-binding protein-1, were co-distributed within PARP domains of axoplasmic whole-mounts isolated from goldfish Mauthner, rabbit and rat nerve fibers. The distribution of co-localization signals of fluorophore pixels, however, was asymmetric in PARP domains, possibly indicative of endpoint trafficking of RNPs.

View Article and Find Full Text PDF