Publications by authors named "Agostina Nardone"

The ESR1 ligand binding domain activating mutations are the most prevalent genetic mechanism of acquired endocrine resistance in metastatic hormone receptor-positive breast cancer. These mutations confer endocrine resistance that remains estrogen receptor (ER) dependent. We hypothesized that in the presence of the ER mutations, continued ER blockade with endocrine therapies that target mutant ER is essential for tumor suppression even with chemotherapy treatment.

View Article and Find Full Text PDF

Purpose: To identify prognostic circulating biomarkers to cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i), we performed a mutational analysis on circulating tumor DNA (ctDNA) samples from patients included in the TREnd trial, which randomly assigned patients to receive the CDK4/6i palbociclib alone or with the endocrine treatment (ET) to which they had progressed.

Methods: Forty-six patients were enrolled in this substudy. Plasma was collected before treatment (T0), after the first cycle of therapy (T1), and at the time of progression (T2).

View Article and Find Full Text PDF

Purpose: Resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) is a clinical challenge in estrogen receptor (ER)-positive (ER+) breast cancer. Cyclin-dependent kinase 7 (CDK7) is a candidate target in endocrine-resistant ER+ breast cancer models and selective CDK7 inhibitors (CDK7i) are in clinical development for the treatment of ER+ breast cancer. Nonetheless, the precise mechanisms responsible for the activity of CDK7i in ER+ breast cancer remain elusive.

View Article and Find Full Text PDF

Unlabelled: Cyclin-dependent kinases 4/6 (CDK4/6) inhibitors such as palbociclib are approved for the treatment of metastatic estrogen receptor-positive (ER+) breast cancer in combination with endocrine therapies and significantly improve outcomes in patients with this disease. However, given the large number of possible pairwise drug combinations and administration schedules, it remains unclear which clinical strategy would lead to best survival. Here, we developed a computational, cell cycle-explicit model to characterize the pharmacodynamic response to palbociclib-fulvestrant combination therapy.

View Article and Find Full Text PDF

Aberrant activation of the forkhead protein FOXA1 is observed in advanced hormone-related cancers. However, the key mediators of high FOXA1 signaling remain elusive. We demonstrate that ectopic high FOXA1 (H-FOXA1) expression promotes estrogen receptor-positive (ER+) breast cancer (BC) metastasis in a xenograft mouse model.

View Article and Find Full Text PDF

Unlabelled: Immunotherapies have yet to demonstrate significant efficacy in the treatment of hormone receptor-positive (HR+) breast cancer. Given that endocrine therapy (ET) is the primary approach for treating HR+ breast cancer, we investigated the effects of ET on the tumor immune microenvironment (TME) in HR+ breast cancer. Spatial proteomics of primary HR+ breast cancer samples obtained at baseline and after ET from patients enrolled in a neoadjuvant clinical trial (NCT02764541) indicated that ET upregulated β2-microglobulin and influenced the TME in a manner that promotes enhanced immunogenicity.

View Article and Find Full Text PDF

DNA-methylation alterations are common in cancer and display unique characteristics that make them ideal markers for tumor quantification and classification. Here we present MIMESIS, a computational framework exploiting minimal DNA-methylation signatures composed by a few dozen informative DNA-methylation sites to quantify and classify tumor signals in tissue and cell-free DNA samples. Extensive analyses of multiple independent and heterogenous datasets including >7200 samples demonstrate the capability of MIMESIS to provide precise estimations of tumor content and to enable accurate classification of tumor type and molecular subtype.

View Article and Find Full Text PDF

Purpose: Sensitivity to endocrine therapy (ET) is critical for the clinical benefit from the combination of palbociclib plus ET in hormone receptor-positive/HER2-negative (HR+/HER2-) advanced breast cancer. Bazedoxifene is a third-generation selective estrogen receptor (ER) modulator and selective ER degrader with activity in preclinical models of endocrine-resistant breast cancer, including models harboring ESR1 mutations. Clinical trials in healthy women showed that bazedoxifene is well tolerated.

View Article and Find Full Text PDF

Unlabelled: Most invasive lobular breast cancers (ILC) are of the luminal A subtype and are strongly hormone receptor-positive. Yet, ILC is relatively resistant to tamoxifen and associated with inferior long-term outcomes compared with invasive ductal cancers (IDC). In this study, we sought to gain mechanistic insights into these clinical findings that are not explained by the genetic landscape of ILC and to identify strategies to improve patient outcomes.

View Article and Find Full Text PDF

Purpose: Cyclin-dependent kinase 4 (CDK4) and CDK6 inhibitors (CDK4/6i) are highly effective against estrogen receptor-positive (ER)/HER2 breast cancer; however, intrinsic and acquired resistance is common. Elucidating the molecular features of sensitivity and resistance to CDK4/6i may lead to identification of predictive biomarkers and novel therapeutic targets, paving the way toward improving patient outcomes.

Experimental Design: Parental breast cancer cells and their endocrine-resistant derivatives (EndoR) were used.

View Article and Find Full Text PDF

Steroid hormones are pivotal modulators of pathophysiological processes in many organs, where they interact with nuclear receptors to regulate gene transcription. However, our understanding of hormone action at the single cell level remains incomplete. Here, we focused on estrogen stimulation of the well-characterized GREB1 and MYC target genes that revealed large differences in cell-by-cell responses, and, more interestingly, between alleles within the same cell, both over time and hormone concentration.

View Article and Find Full Text PDF

Forkhead box A1 (FOXA1) is a pioneer factor that facilitates chromatin binding and function of lineage-specific and oncogenic transcription factors. Hyperactive FOXA1 signaling due to gene amplification or overexpression has been reported in estrogen receptor-positive (ER) endocrine-resistant metastatic breast cancer. However, the molecular mechanisms by which FOXA1 up-regulation promotes these processes and the key downstream targets of the FOXA1 oncogenic network remain elusive.

View Article and Find Full Text PDF

Circulating tumor cell clusters (CTCcl) have a higher metastatic potential compared to single CTCs and predict long-term outcomes in breast cancer (BC) patients. Because of the rarity of CTCcls, molecular characterization of primary tumors that give rise to CTCcl hold significant promise for better diagnosis and target discovery to combat metastatic BC. In our study, we utilized the reverse-phase protein array (RPPA) and transcriptomic (RNA-Seq) data of 10 triple-negative BC patient-derived xenograft (TNBC PDX) transplantable models with CTCs and evaluated expression of upregulated candidate protein Bcl2 (B-cell lymphoma 2) by immunohistochemistry (IHC).

View Article and Find Full Text PDF

Despite effective strategies, resistance in HER2 breast cancer remains a challenge. While the mevalonate pathway (MVA) is suggested to promote cell growth and survival, including in HER2 models, its potential role in resistance to HER2-targeted therapy is unknown. Parental HER2 breast cancer cells and their lapatinib-resistant and lapatinib + trastuzumab-resistant derivatives were used for this study.

View Article and Find Full Text PDF

Background: Breast cancer patient-derived xenograft (BC-PDX) models represent a continuous and reproducible source of circulating tumor cells (CTCs) for studying their role in tumor biology and metastasis. We have previously shown the utility of BC-PDX models in the study of CTCs by immunohistochemistry (IHC) on serial paraffin sections and manual microscopic identification of cytokeratin-positive cells, a method that is both low-throughput and labor-intensive. We therefore aimed to identify and characterize CTCs from small volume mouse blood samples and examined its practical workflow in a study of BC-PDX mice treated with chemotherapy using an automated imaging platform, the AccuCyte®-CyteFinder® system.

View Article and Find Full Text PDF

Background: The oestrogen receptor (ER) is an important therapeutic target in ER-positive (ER+) breast cancer. The selective ER degrader (SERD), fulvestrant, is effective in patients with metastatic breast cancer, but its intramuscular route of administration and low bioavailability are major clinical limitations.

Methods: Here, we studied the pharmacology of a new oral SERD, AZD9496, in a panel of in vitro and in vivo endocrine-sensitive and -resistant breast cancer models.

View Article and Find Full Text PDF

The surface glycoprotein THY is a marker of myoepithelial precursor cells, which are basal cells with epithelial-mesenchymal intermediate phenotype originating from the ectoderm. Myoepithelial precursor cells are lost during progression from to invasive carcinoma. To define the functional role of Thy1-positive cells within the myoepithelial population, we tracked Thy1 expression in human breast cancer samples, isolated THY1-positive myoepithelial progenitor cells (CD44/CD24/CD90), and established long-term cultures (parental cells).

View Article and Find Full Text PDF

Estrogen receptor α (ER) ligand-binding domain (LBD) mutations are found in a substantial number of endocrine treatment-resistant metastatic ER-positive (ER) breast cancers. We investigated the chromatin recruitment, transcriptional network, and genetic vulnerabilities in breast cancer models harboring the clinically relevant ER mutations. These mutants exhibit both ligand-independent functions that mimic estradiol-bound wild-type ER as well as allele-specific neomorphic properties that promote a pro-metastatic phenotype.

View Article and Find Full Text PDF

The estrogen receptor (ER) drives the growth of most luminal breast cancers and is the primary target of endocrine therapy. Although ER blockade with drugs such as tamoxifen is very effective, a major clinical limitation is the development of endocrine resistance especially in the setting of metastatic disease. Preclinical and clinical observations suggest that even following the development of endocrine resistance, ER signaling continues to exert a pivotal role in tumor progression in the majority of cases.

View Article and Find Full Text PDF

Resistance to anti-HER2 therapies in HER2 breast cancer can occur through activation of alternative survival pathways or reactivation of the HER signaling network. Here we employed BT474 parental and treatment-resistant cell line models to investigate a mechanism by which HER2 breast cancer can reactivate the HER network under potent HER2-targeted therapies. Resistant derivatives to lapatinib (L), trastuzumab (T), or the combination (LR/TR/LTR) were developed independently from two independent estrogen receptor ER/HER2 BT474 cell lines (AZ/ATCC).

View Article and Find Full Text PDF

Forkhead box protein A1 (FOXA1) is a pioneer factor of estrogen receptor α (ER)-chromatin binding and function, yet its aberration in endocrine-resistant (Endo-R) breast cancer is unknown. Here, we report preclinical evidence for a role of FOXA1 in Endo-R breast cancer as well as evidence for its clinical significance. FOXA1 is gene-amplified and/or overexpressed in Endo-R derivatives of several breast cancer cell line models.

View Article and Find Full Text PDF

Estrogen receptor (ER) is expressed in approximately 70% of newly diagnosed breast tumors. Although endocrine therapy targeting ER is highly effective, intrinsic or acquired resistance is common, significantly jeopardizing treatment outcomes and minimizing overall survival. Even in the presence of endocrine resistance, a continued role of ER signaling is suggested by several lines of clinical and preclinical evidence.

View Article and Find Full Text PDF

Purpose: To investigate the direct effect and therapeutic consequences of epidermal growth factor receptor 2 (HER2)-targeting therapy on expression of estrogen receptor (ER) and Bcl2 in preclinical models and clinical tumor samples.

Experimental Design: Archived xenograft tumors from two preclinical models (UACC812 and MCF7/HER2-18) treated with ER and HER2-targeting therapies and also HER2+ clinical breast cancer specimens collected in a lapatinib neoadjuvant trial (baseline and week 2 posttreatment) were used. Expression levels of ER and Bcl2 were evaluated by immunohistochemistry and Western blot analysis.

View Article and Find Full Text PDF

Introduction: Activation of the phosphatidylinositol 3-kinase (PI3K) pathway in estrogen receptor α (ER)-positive breast cancer is associated with reduced ER expression and activity, luminal B subtype, and poor outcome. Phosphatase and tensin homolog (PTEN), a negative regulator of this pathway, is typically lost in ER-negative breast cancer. We set out to clarify the role of reduced PTEN levels in endocrine resistance, and to explore the combination of newly developed PI3K downstream kinase inhibitors to overcome this resistance.

View Article and Find Full Text PDF