The determination of ligand-receptor binding affinities plays a key role in the development process of pharmaceuticals. While the classical radiochemical binding assay uses radioligands, fluorescence-based binding assays require fluorescent probes. Usually, radio- and fluorescence-labeled ligands are dissimilar in terms of structure and bioactivity, and can be used in either radiochemical or fluorescence-based assays.
View Article and Find Full Text PDFIn advanced drug delivery, versatile liposomal formulations are commonly employed for safer and more accurate therapies. Here we report a method that allows a straightforward production of synthetic monodisperse (~ 100 μm) giant unilamellar vesicles (GUVs) using a microfluidic system. The stability analysis based on the microscopy imaging showed that at ambient conditions the produced GUVs had a half-life of 61 ± 2 h.
View Article and Find Full Text PDFThe neuropeptide Y (NPY) Y receptor (YR), a member of the family of NPY receptors, is physiologically activated by the linear 36-amino acid peptide pancreatic polypeptide (PP). The YR is involved in the regulation of various biological processes, most importantly pancreatic secretion, gastrointestinal motility, and regulation of food intake. So far, YR binding affinities have been mostly studied in radiochemical binding assays.
View Article and Find Full Text PDFDopamine receptors are G-protein-coupled receptors that are connected to severe neurological disorders. The development of new ligands targeting these receptors enables gaining a deeper insight into the receptor functioning, including binding mechanisms, kinetics and oligomerization. Novel fluorescent probes allow the development of more efficient, cheaper, reliable and scalable high-throughput screening systems, which speeds up the drug development process.
View Article and Find Full Text PDFNumerous human cancers, especially hypoxic solid tumors, express carbonic anhydrase IX (CAIX), a transmembrane protein with its catalytic domain located in the extracellular space. CAIX acidifies the tumor microenvironment, promotes metastases and invasiveness, and is therefore considered a promising anticancer target. We have designed a series of high affinity and high selectivity fluorescein-labeled compounds targeting CAIX to visualize and quantify CAIX expression in cancer cells.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2022
Multiple studies have shown associations between exposure to endocrine disrupting chemicals (EDCs) and reduced fertility in women. However, little is known about the target organs of chemical disruption of female fertility. Here, we focus on the hormone-sensitive uterine lining, the endometrium, as a potential target.
View Article and Find Full Text PDFBrightfield cell microscopy is a foundational tool in life sciences. The acquired images are prone to contain visual artifacts that hinder downstream analysis, and automatically removing them is therefore of great practical interest. Deep convolutional neural networks are state-of-the-art for image segmentation, but require pixel-level annotations, which are time-consuming to produce.
View Article and Find Full Text PDFSigma-1 receptor (Sig1R) is an endoplasmic reticulum (ER)-related membrane protein, that forms heteromers with other cellular proteins. As the mechanism of action of this chaperone protein remains unclear, the aim of the present study was to detect and analyze the intracellular dynamics of Sig1R in live cells using super-resolution imaging microscopy. For that, the Sig1R-yellow fluorescent protein conjugate (Sig1R-YFP) together with fluorescent markers of cell organelles were transfected into human ovarian adenocarcinoma (SK-OV-3) cells with BacMam technology.
View Article and Find Full Text PDFSince 1991, the NAD(P)H-aided conversion of resazurin to fluorescent resorufin has been widely used to measure viability based on the metabolic activity in mammalian cell culture and primary cells. However, different research groups have used divergent assay protocols, scarcely reporting the systematic optimization of the assay. Here, we perform extensive studies to fine-tune the experimental protocols utilizing resazurin-based viability sensing.
View Article and Find Full Text PDFThe recent crystallization of the neuropeptide Y Y receptor (YR) in complex with the argininamide-type YR selective antagonist UR-MK299 () opened up a new approach toward structure-based design of nonpeptidic YR ligands. We designed novel fluorescent probes showing excellent YR selectivity and, in contrast to previously described fluorescent YR ligands, considerably higher (∼100-fold) binding affinity. This was achieved through the attachment of different fluorescent dyes to the diphenylacetyl moiety in via an amine-functionalized linker.
View Article and Find Full Text PDFTumor extracellular matrix (ECM) is a high-capacity target for the precision delivery of affinity ligand-guided drugs and imaging agents. Recently, we developed a PL1 peptide (sequence: PPRRGLIKLKTS) for systemic targeting of malignant ECM. Here, we map the dynamics of PL1 binding to its receptors Fibronectin Extra Domain B (FN-EDB) and Tenascin C C-isoform (TNC-C) by computational modeling and cell-free binding studies on mutated receptor proteins, and study cellular binding and internalization of PL1 nanoparticles in cultured cells.
View Article and Find Full Text PDFHyperandrogenic women with PCOS show disrupted decidualization (DE) and placentation. Dihydrotestosterone (DHT) is reported to enhance DE in non-PCOS endometrial stromal cells (eSC); however, this has not been assessed in PCOS cells (eSC). Therefore, we studied the transcriptome profile of non-decidualized (non-DE) and DE eSCs from women with PCOS and Ctrl in response to short-term estradiol (E2) and/or progesterone (P4) exposure with/without (±) DHT.
View Article and Find Full Text PDFStudy Question: Can a combination of the focussed protein kinase assays and a wide-scale proteomic screen pinpoint novel, clinically relevant players in decidualization in vitro and in vivo?
Summary Answer: Rho-dependent protein kinase (ROCK) activity is elevated in response to the combined treatment with progesterone and 8-Br-cAMP during in vitro decidualization, mirrored by increase of ROCK2 mRNA and protein levels and the phosphorylation levels of its downstream target Cofilin-1 (CFL1) in secretory versus proliferative endometrium.
What Is Known Already: Decidualization is associated with extensive changes in gene expression profile, proliferation, metabolism and morphology of endometrium, yet only a few underlying molecular pathways have been systematically explored. In vitro decidualization of endometrial stromal cells (ESCs) can be reportedly induced using multiple protocols with variable physiological relevance.
Cyclic adenosine monophosphate (cAMP) serves as a second messenger for numerous G-protein-coupled receptors. Changes in cellular cAMP levels reflect the biological activity of various GPCR-specific agents, including protein hormones. cAMP biosensors based on detection of Förster-type resonance energy transfer (FRET) offer unique advantages including the ratiometric nature of measurement, adjustable affinity toward detected molecule, capability of monitoring kinetics of cAMP release, and compatibility with the multi-well format and fluorescence plate reader platforms.
View Article and Find Full Text PDFDuring the past decade, fluorescence methods have become valuable tools for characterizing ligand binding to G protein-coupled receptors (GPCRs). However, only a few of the assays enable studying wild-type receptors and monitor the ligand binding in real time. One of the approaches that is inherently suitable for this purpose is the fluorescence anisotropy (FA) assay.
View Article and Find Full Text PDFBRET and fluorescence anisotropy (FA) are two fluorescence-based techniques used for the characterization of ligand binding to G protein-coupled receptors (GPCRs) and both allow monitoring of ligand binding in real time. In this study, we present the first direct comparison of BRET-based and FA-based binding assays using the human M muscarinic acetylcholine receptor (MR) and two TAMRA (5-carboxytetramethylrhodamine)-labeled fluorescent ligands as a model system. The determined fluorescent ligand affinities from both assays were in good agreement with results obtained from radioligand competition binding experiments.
View Article and Find Full Text PDFDopamine receptors are G protein-coupled receptors that have several essential functions in the central nervous system. A better understanding of the regulatory mechanisms of ligand binding to the receptor may open new possibilities to affect the downstream signal transduction pathways. The majority of the available ligand binding assays use either membrane preparations, cell suspensions, or genetically modified receptors, which may give at least partially incorrect understanding of ligand binding.
View Article and Find Full Text PDFExtracellular vesicles (EVs), including exosomes and microvesicles (<200 nm), play a vital role in intercellular communication and carry a net negative surface charge under physiological conditions. Zeta potential (ZP) is a popular method to measure the surface potential of EVs, while used as an indicator of surface charge, and colloidal stability influenced by surface chemistry, bioconjugation, and the theoretical model applied. Here, we investigated the effects of such factors on ZP of well-characterized EVs derived from the human choriocarcinoma JAr cells.
View Article and Find Full Text PDFMelanocortin-4 receptors (MC R) are unique among G-protein-coupled receptors (GPCRs) as they have endogenous ligands that can exhibit inverse agonistic properties in the case of elevated basal activity. It is known that the constitutive activity of GPCRs strongly affects the ligand-dependent physiological responses, but little is known about these regulatory mechanisms. Since several metal ions have been shown to be important modulators of the signal transduction of GPCRs, we hypothesized that metal ions regulate the basal activity of MC Rs.
View Article and Find Full Text PDFResearch Question: Endometriosis is a common gynaecological disease defined by the presence of endometrium-like tissue outside the uterus. This complex disease, often accompanied by severe pain and infertility, causes a significant medical and socioeconomic burden; hence, novel strategies are being sought for the treatment of endometriosis. Here, we set out to explore the cytotoxic effects of a panel of compounds to find toxins with different efficiency in eutopic versus ectopic cells, thus highlighting alterations in the corresponding molecular pathways.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2019
While human chorionic gonadotropin (hCG) appears to have an essential role in early pregnancy, it is controversial whether the hyperglycosylated form of hCG (hCG-h), which is the major hCG isoform during the first 4-5 weeks of pregnancy, is able to activate LH/hCG receptor (LHCGR). To address this, we utilized different extensively characterized hCG and hCGβ reference reagents, cell culture- and urine-derived hCG-h preparations, and an in vitro reporter system for LHCGR activation. The WHO hCG reference reagent (99/688) was found to activate LHCGR with an EC-value of 3.
View Article and Find Full Text PDFDopamine receptors, which belong to the family of G protein-coupled receptors, are very substantial regulators in the brain and therefore important targets in drug discovery. Radioligand binding assay has been the method of choice for screening novel dopaminergic drugs for decades. We demonstrate that fluorescent ligand BodipyFL-SKF83566 binding to dopamine D receptors expressed in budded baculovirus particles can be characterized with fluorescent anisotropy (FA) based assay and that this is a valuable alternative to the radioligand binding assay.
View Article and Find Full Text PDFMastitis, an inflammation of the mammary gland and udder tissue, is the major endemic disease of dairy cattle. In addition to causing health problems to the animals, mastitis leads to the reduction of milk production and quality, representing a significant economic burden for farmers. To enable timely treatment of infected animals with pathogen-specific antibiotics, the development of automated analytical methods for rapid on-site identification and quantification of mastitis-causing pathogens in milk is particularly important.
View Article and Find Full Text PDF