Publications by authors named "Agnieszka Zmienko"

MicroRNAs (miRNAs) regulate gene expression by RNA interference mechanism. In plants, miRNA genes (MIRs) which are grouped into conserved families, i.e.

View Article and Find Full Text PDF
Article Synopsis
  • * After analyzing over 1,000 plant accessions, we found that some gene clusters (like those for tirucalladienol and marneral) showed little genetic variation, while others (like arabidiol/baruol) were more diverse, with notable changes in gene structure.
  • * The study emphasizes how these evolving MGCs impact plant adaptation and the variations in traits, such as root growth dynamics related to climate conditions.
View Article and Find Full Text PDF

SNF1-Related protein kinases Type 2 (SnRK2) are plant-specific enzymes widely distributed across the plant kingdom. They are key players controlling abscisic acid (ABA)-dependent and ABA-independent signaling pathways in the plant response to osmotic stress. Here we established that SnRK2.

View Article and Find Full Text PDF

PSV infection changed the abundance of host plant's transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and cytosol, affecting photosynthesis, translation, transcription, and splicing. Virus infection is a process resulting in numerous molecular, cellular, and physiological changes, a wide range of which can be analyzed due to development of many high-throughput techniques. Plant RNA viruses are known to replicate in the cytoplasm; however, the roles of chloroplasts and other cellular structures in the viral replication cycle and in plant antiviral defense have been recently emphasized.

View Article and Find Full Text PDF

Nanopore sequencing is a third generation sequencing technique. It involves the electrophoretic transport of nucleic acids through the protein channels of nanometer size, called nanopores, followed by deciphering their nucleotide sequence, based on the changes in the measured electrical signal. The nanopore technique allowed for remarkable extending the sequencing read lengths and enabled direct sequencing of native DNA and RNA molecules.

View Article and Find Full Text PDF
Article Synopsis
  • Black spot disease is a significant global threat as there are no fully resistant plant varieties, particularly affecting white cabbage (var. f.).
  • The study investigates how black spot disease affects leaf structure, leading to severe damage in chloroplasts and organelle disintegration, which compromises the plant's cell integrity.
  • Findings suggest early changes in photosynthesis may be a defense response by the host, while later declines in photosynthetic efficiency correlate with fungal infection damage, highlighting a complex interaction between the plant and the pathogen.
View Article and Find Full Text PDF

Copy number variations (CNVs) greatly contribute to intraspecies genetic polymorphism and phenotypic diversity. Recent analyses of sequencing data for >1000 Arabidopsis () accessions focused on small variations and did not include CNVs. Here, we performed genome-wide analysis and identified large indels (50 to 499 bp) and CNVs (500 bp and larger) in these accessions.

View Article and Find Full Text PDF

Peanut stunt virus (PSV) is a widespread disease infecting legumes. The PSV strains are classified into four subgroups and some are defined by the association of satellite RNAs (satRNAs). In the case of PSV, the presence of satRNAs alters the symptoms of disease in infected plants.

View Article and Find Full Text PDF

Background: A pool of small RNA fragments (RFs) derived from diverse cellular RNAs has recently emerged as a rich source of functionally relevant molecules. Although their formation and accumulation has been connected to various stress conditions, the knowledge on RFs produced upon viral infections is very limited. Here, we applied the next generation sequencing (NGS) to characterize RFs generated in the hepatitis C virus (HCV) cell culture model (HCV-permissive Huh-7.

View Article and Find Full Text PDF

Copy number variants (CNVs) are intraspecies duplications/deletions of large DNA segments (>1 kb). A growing number of reports highlight the functional and evolutionary impact of CNV in plants, increasing the need for appropriate tools that enable locus-specific CNV genotyping on a population scale. Multiplex ligation-dependent probe amplification (MLPA) is considered a gold standard in genotyping CNV in humans.

View Article and Find Full Text PDF

Background: Intraspecies copy number variations (CNVs), defined as unbalanced structural variations of specific genomic loci, ≥1 kb in size, are present in the genomes of animals and plants. A growing number of examples indicate that CNVs may have functional significance and contribute to phenotypic diversity. In the model plant Arabidopsis thaliana at least several hundred protein-coding genes might display CNV; however, locus-specific genotyping studies in this plant have not been conducted.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infection is one of the major causes of chronic liver diseases. Unfortunately, the mechanisms of HCV infection-induced liver injury and host-virus interactions are still not well recognized. To better understand these processes we determined the changes in the host gene expression that occur during HCV infection of Huh-7.

View Article and Find Full Text PDF

Background: Nicotiana benthamiana has been widely used in laboratories around the world for studying plant-pathogen interactions and posttranscriptional gene expression silencing. Yet the exploration of its transcriptome has lagged behind due to the lack of both adequate sequence information and genome-wide analysis tools, such as DNA microarrays. Despite the increasing use of high-throughput sequencing technologies, the DNA microarrays still remain a popular gene expression tool, because they are cheaper and less demanding regarding bioinformatics skills and computational effort.

View Article and Find Full Text PDF

The aim of this study was to analyze whether polyamine (PA) metabolism is involved in dark-induced Hordeum vulgare L. 'Nagrad' leaf senescence. In the cell, the titer of PAs is relatively constant and is carefully controlled.

View Article and Find Full Text PDF

Somatically acquired genomic alterations that drive oncogenic cellular processes are of great scientific and clinical interest. Since the initiation of large-scale cancer genomic projects (e.g.

View Article and Find Full Text PDF

Cell senescence occurs as a part of developmental or stress-induced process. It is tightly regulated and involves a sequence of metabolic and structural alterations, eventually leading to cell death. Dark-induced leaf senescence is a useful model for studying senescence-related events.

View Article and Find Full Text PDF

Only approximately 50% of all familial breast cancers can be explained by known genetic factors, including mutations in BRCA1 and BRCA2. One of the most extensively studied candidates for breast and/or ovarian cancer susceptibility is BARD1. Although it was suggested that large mutations may contribute substantially to the deleterious variants of BARD1, no systematic study of the large mutations in BARD1 has been performed.

View Article and Find Full Text PDF

Leaf senescence is a tightly regulated developmental or stress-induced process. It is accompanied by dramatic changes in cell metabolism and structure, eventually leading to the disintegration of chloroplasts, the breakdown of leaf proteins, internucleosomal fragmentation of nuclear DNA and ultimately cell death. In light of the global and intense reorganization of the senescing leaf transcriptome, measuring time-course gene expression patterns in this model is challenging due to the evident problems associated with selecting stable reference genes.

View Article and Find Full Text PDF

Rape seeds primed with -1.2 MPa polyethylene glycol 6000 showed improved germination performance. To better understand the beneficial effect of osmopriming on seed germination, a global expression profiling method was used to compare, for the first time, transcriptomic and proteomic data for osmoprimed seeds at the crucial phases of priming procedure (soaking, drying), whole priming process and subsequent germination.

View Article and Find Full Text PDF

Experimental co-expression data and protein-protein interaction networks are frequently used to analyze the interactions among genes or proteins. Recent studies have investigated methods to integrate these two sources of information. We propose a new method to integrate co-expression data obtained through DNA microarray analysis (MA) and protein-protein interaction (PPI) network data, and apply it to Arabidopsis thaliana.

View Article and Find Full Text PDF

Copy number variants (CNVs) are genomic rearrangements resulting from gains or losses of DNA segments. Typically, the term refers to rearrangements of sequences larger than 1 kb. This type of polymorphism has recently been shown to be a key contributor to intra-species genetic variation, along with single-nucleotide polymorphisms and short insertion-deletion polymorphisms.

View Article and Find Full Text PDF

Cadmium ions are notorious environmental pollutants. To adapt to cadmium-induced deleterious effects plants have developed sophisticated defense mechanisms. However, the signaling pathways underlying the plant response to cadmium are still elusive.

View Article and Find Full Text PDF

Plastids are small organelles equipped with their own genomes (plastomes). Although these organelles are involved in numerous plant metabolic pathways, current knowledge about the transcriptional activity of plastomes is limited. To solve this problem, we constructed a plastid tiling microarray (PlasTi-microarray) consisting of 1629 oligonucleotide probes.

View Article and Find Full Text PDF