Emerging research underscores the pivotal role of adipose tissue in regulating systemic aging processes, particularly when viewed through the lens of the endocrine hypotheses of aging. This study delves into the unique adipose characteristics in an important animal model of aging - the long-lived Ames dwarf (df/df) mice. Characterized by a Prop1 gene mutation, these mice exhibit a deficiency in growth hormone (GH), prolactin, and TSH, alongside extremely low circulating IGF-1 levels.
View Article and Find Full Text PDFCell Physiol Biochem
December 2023
Cell senescence was considered an attribute of normal dividing cells, which distinguishing them from cancer cells that do not have a division limit. However, recent studies show that senescence could also occur in cancer cells. Cancer cell senescence could occur as a result of chemotherapy, radiation, inhibition of telomerase activity, induction of DNA damage, changes in the tumor microenvironment, regulation of senescence-related proteins, oxidative stress, inflammation, or epigenetic dysregulation.
View Article and Find Full Text PDFPurpose: In our study, the glucose and cell context-dependent impact of the BMI-1 inhibitor PTC-209 on the AKT pathway in endometrial cancer cells was determined.
Methods: The expression of BMI-1 was inhibited by PTC-209 in endometrial cancer cells HEC-1A and Ishikawa stimulated with insulin and grown in different glucose concentrations. The migration, invasion, viability, and proliferative potential after PTC-209 treatment was assessed using wound-healing, Transwell assay, Matrigel-coated inserts, and MTT tests.
The PI3K/AKT pathway is frequently activated in endometrial carcinoma. BMI-1 (B-lymphoma Mo-MLV insertion region 1) protein affects expression of PTEN (phosphatase and tensin homolog) in some cancers, but its significance for endometrial tumorigenesis is not known. The objective of this study was to determine the relationship between BMI-1 and expression of factors affecting AKT (protein kinase B) phosphorylation level in endometrial cancer.
View Article and Find Full Text PDFEnhancer of zest homolog 2 (EZH2) is a histone methyltransferase which plays a crucial role in cancer progression by regulation of genes involved in cellular processes such as proliferation, invasion and self-renewal. Activity and biological function of EZH2 are regulated by posttranslational modifications. It is suggested that EZH2 stability may be regulated by O-GlcNAc transferase (OGT), which is an enzyme catalyzing the addition of GlcNAc moieties to target proteins.
View Article and Find Full Text PDFBackground: Cells adapt to hypoxia by transcriptional induction of genes that participate in regulation of angiogenesis, glucose metabolism and cell proliferation. The primary factors mediating cell response to low oxygen tension are hypoxia inducible factors (HIFs), oxygen-dependent transcription activators. The stability and activity of the α subunits of HIFs are controlled by hydroxylation reactions that require ascorbate as a cofactor.
View Article and Find Full Text PDFBMI-1 (B-lymphoma Mo-MLV insertion region 1) protein is a constituent of Polycomb Repressive Complex 1 (PRC1) that via ubiquitination of histone H2A affects expression of many genes. BMI-1 is involved in cellular processes such as DNA repair, proliferation, growth, senescence and apoptosis. BMI-1 plays a key role in biology of stem cells including cancer stem cells by regulation of their self-renewal and differentiation.
View Article and Find Full Text PDFObjectives: The metastatic ability of tumors is characteristic for malignant neoplasms and constitutes the main cause of therapeutics failures. Metastasis formation involves the sequence of processes such as proteolytic degradation of the basement membrane, migration, intravasation, extravasation, proliferation and angiogenesis. Cadherins and integrins are groups of proteins directly involved in these processes.
View Article and Find Full Text PDF