Publications by authors named "Agnieszka Wieckowska"

In this study, we present a nanocomposite hydrogel designed for skin motion sensing. The hydrogel is based on poly(acrylamide) crosslinked with gold nanoparticles covalently bound to the polymer matrix, yielding a robust, highly elastic and conductive material. The choice of amino acid derivative - N,N'-diacryloylcystine salt (BISS) - as a crosslinker allows for the introduction of gold nanoparticles, due to the presence of sulfide groups in its structure.

View Article and Find Full Text PDF

The study of the surface of membrane coatings constructed with adsorbed coronavirus (COV) was described to test their suitability for the antiviral activity for application in personal protective and medical equipment. The nanocoating based on polyethyleneimine (PEI) or polystyrene sulfonate (PSS) with metallic nanoparticles incorporated was investigated using the AFM technique. Moreover, the functioning of human lung cells in a configuration with the prepared material with the adsorbed coronavirus was studied using microscopic techniques and flow cytometry.

View Article and Find Full Text PDF

In this report, we demonstrate the advantages of the dual-mode operation of an enzymatic biosupercapacitor with nanostructured polypyrrole/nanocellulose, gold nanoparticle-based paper electrodes, sucrose as the anode fuel and molecular oxygen as the oxidant. The device allowed conversion of the sucrose biofuel, and offered storage of the generated power in the same, small-scale device. The external and internal biosupercapacitor re-charging modes were compared.

View Article and Find Full Text PDF

A significant problem still exists with the low power output and durability of the bioelectrochemical fuel cells. We constructed a fuel cell with an enzymatic cascade at the anode for efficient energy conversion. The construction involved fabrication of the flow-through cell by three-dimensional printing.

View Article and Find Full Text PDF

[2]rotaxanes composed of a dibenzo-24-crown-8 wheel (DB24C8) and an axle containing two metal-complexing tetraazamacrocyclic units linked with a p-xylylene bridge, coordinating the same or different metal ions (Ni and/or Cu) are described. A symmetric di-Ni rotaxane crystallizes in the monoclinic P21/c space group with one rotaxane cation and four PF6- counterions in the asymmetric part of the unit cell. In the crystal, the cations and anions of the investigated compound form an intertwined 3D-framework with C-HF and C-Hπ intermolecular interactions.

View Article and Find Full Text PDF

The azamacrocyclic complex was used as a platform for the construction of [3]rotaxanes containing two DB24C8 macrocycles per molecule. The complex unit incorporates two electron deficient π-bond systems and two N-H hydrogen bond donating groups which facilitated the formation of a 1 : 2 interlocked structure. Synthesis and properties of such compounds are presented.

View Article and Find Full Text PDF

Life is dependent upon the ability of a cell to rapidly respond to changes in the environment. Small perturbations in local environments change the ability of molecules to interact and, hence, communicate. Hydrostatic pressure provides a rapid non-invasive, fully reversible method for modulating affinities between molecules both and We have developed a simple fluorescence imaging chamber that allows intracellular protein dynamics and molecular events to be followed at pressures <200 bar in living cells.

View Article and Find Full Text PDF

Modification of ultrasmall gold nanoparticles (AuNPs) with the lipoic acid derivative of folic acid was found to enhance their accumulation in the cancer cell, as compared to AuNPs without addressing units. The application of lipoic acid enabled the control of the gold nanoparticle functionalities leading to enhanced solubility and allowing for attachment of both the folic acid and the cytotoxic drug, doxorubicin. More robust attachment of doxorubicin to the nanoparticle through the amide bond resulted in toxicity comparable with that of the drug alone, opening a new perspective for designing more potent, but less toxic nanopharmaceuticals.

View Article and Find Full Text PDF

Three - dimensional (3D) electrodes are successfully used to overcome the limitations of the low space - time yield and low normalized space velocity obtained in electrochemical processes with two - dimensional electrodes. In this study, we developed a three - dimensional reticulated vitreous carbon - gold (RVC-Au) sponge as a scaffold for enzymatic fuel cells (EFC). The structure of gold and the real electrode surface area can be controlled by the parameters of metal electrodeposition.

View Article and Find Full Text PDF

Multicenter (bi-, tri-, and tetranuclear) tetraazamacrocyclic complexes were self-assembled from Ni and Cu tetraazamacrocyclic mononuclear units and α,ω-diamines as building blocks. The structures of all compounds studied were proved by spectroscopic methods (ESI MS and NMR spectroscopy). Electrochemical experiments revealed reversible one-electron electrode processes at each of the Ni(2+) and Cu(2+) centers with formation of metal cations in oxidation state +3.

View Article and Find Full Text PDF

The effect of a lipolytic enzyme, pork pancreatic phospholipase A(2), on hybrid bilayer membranes was monitored using voltammetry, impedance spectroscopy and surface plasmon resonance. The hybrid bilayers were prepared by Langmuir-Schaefer transfer of lipid monolayers onto gold electrodes modified with self-assembled alkanethiol monolayers, or by liposome spreading. The electrodes were immersed in the phospholipase aqueous solution to allow adsorption of the enzyme and cleavage of the ester bond in the sn-2 position of phospholipids in the outer leaflet of the hybrid layers.

View Article and Find Full Text PDF

Copper-induced structural rearrangements of Abeta40 structure and its redox properties are described in this study. Electrochemical and fluorescent methods are used to characterise the behaviour of Abeta-Cu species. The data suggest that time-dependent folding of Abeta-Cu species may cause changes in the redox potentials.

View Article and Find Full Text PDF

Three different methods to investigate the activity of a protein kinase (casein kinase, CK2) are described. The phosphorylation of the sequence-specific peptide (1) by CK2 was monitored by electrochemical impedance spectroscopy (EIS). Phosphorylation of the peptide monolayer assembled on a Au electrode yields a negatively charged surface that electrostatically repels the negatively charged redox label [Fe(CN)6]3-/4-, thus increasing the interfacial electron-transfer resistance.

View Article and Find Full Text PDF

The electrochemical analysis of the protein kinase, casein kinase, is accomplished by the voltammetric response of Ag(+) ions associated with the phosphorylated product; the sensing surface is regenerated by the cleavage of the phosphorylated product with alkaline phosphatase, and the phosphorylation/de-phosphorylation processes are monitored by XPS and contact angle measurements.

View Article and Find Full Text PDF

The amplified electrochemical sensing of DNA is accomplished by the analyte-induced aggregation of nucleic acid-functionalized Au nanoparticles, deposition of the aggregates on a thiolated monolayer-functionalized electrode, and the voltammetric analysis of the redox-active methylene blue intercalated in the nucleic acid duplexes associated with the aggregates.

View Article and Find Full Text PDF

A benzoquinone monolayer-functionalized electrode reveals electrochemically or chemically controlled wettability; the hydrophobicity of the hydroquinone-modified surface is enhanced by the presence of a donor-acceptor complex with N,N'-dimethyl-4,4'-bipyridinium as the pi-electron acceptor.

View Article and Find Full Text PDF

N-Methylated bismacrocyclic Cu and Ni complexes were synthesised and structurally characterised in the solid state. Their properties in solution were analysed by using NMR and ESR spectroscopies and electrochemical methods. Face-to-face biscyclidenes linked through polymethylene chains form rectangular boxlike cations.

View Article and Find Full Text PDF

New face-to-face heterodinuclear complexes containing copper(II) and nickel(II) in identical tetraazamacrocyclic environments have been synthesized and characterized using ESI mass-spectrometry, X-ray diffraction, spectroscopic methods, and elemental analysis. These new bismacrocyclic systems were compared with the respective mono- and bismacrocyclic and [2]catenane homonuclear complexes. Interactions between the metal centers were monitored by magnetic and electrochemical measurements.

View Article and Find Full Text PDF