Publications by authors named "Agnieszka Tomala"

Background: Poly(glycerol sebacate) is a polymeric material with potential biomedical application in the field of tissue engineering. In order to act as a biodegradable scaffold, its incubation study is vital to simulate its behavior.

Objectives: This study explores the degradation of porous poly(glycerol sebacate)/hydroxyapatite scaffolds subjected to incubation in various physiological solutions.

View Article and Find Full Text PDF

Hard bone disease is a clinical problem affecting more than 20 million people annually worldwide, with significant health, social, and economic consequences. For successful integration of any implant, the key aspects are bone regeneration, osseointegration at the bone-implant interface, and the mitigation of inflammation. The purpose of this research work is to demonstrate an innovative material system and method of biomaterial preparation for regenerative medicine.

View Article and Find Full Text PDF

One of the promising methods for improving the durability and reliability of friction joints in combustion engines is the use of thin and hard coatings, including coatings based on amorphous DLC. The a-C:H:W coating was produced using the commercial PVD method. The tested tribological joints were made of AISI 4337 steel and SAE-48 bearing alloy (conformal contact) and AISI 4337 steel and valve shims (non-conformal contact).

View Article and Find Full Text PDF

In an increasingly aging society, there is a growing demand for the development of technology related to tissue regeneration. It involves the development of the appropriate biomaterials whose properties will allow the desired biological response to be obtained. Bioactivity is strongly affected by the proper selection of active ingredients.

View Article and Find Full Text PDF

Bioactive calcium phosphate ceramics (CaPs) are one of the building components of the inorganic part of bones. Synthetic CaPs are frequently used as materials for filling bone defects in the form of pastes or composites; however, their porous structure allows modification with active substances and, thus, subsequent use as a drug carrier for the controlled release of active substances. In this study, four different ceramic powders were compared: commercial hydroxyapatite (HA), TCP, brushite, as well as HA obtained by wet precipitation methods.

View Article and Find Full Text PDF

Hydroxyapatite (HAp) constitutes a significant inorganic compound which due to its osteoinductivity, osteoconductivity as well as the ability to promote bone growth and regeneration is widely applied in development of biomaterials designed for bone tissue engineering. In this work, various synthesis methodologies of HAp based on the wet precipitation technique were applied, and the impact of pH of the reaction mixture, the concentration of individual reagents as well as the type of stirring applied (mechanical/magnetic) on the properties of final powders was discussed. Spectroscopic methods (Fourier transform infrared, Raman) and X-ray diffraction allowed to verify the synthesis parameters leading to obtaining calcium phosphate with 96% HAp in phase which indicated higher homogeneity of obtained powder (93.

View Article and Find Full Text PDF

Nowadays, a great attention is directed into development of innovative multifunctional composites which may support bone tissue regeneration. This may be achieved by combining collagen and hydroxyapatite showing bioactivity, osteoconductivity and osteoinductivity with such biocompatible polymers as polyvinylpyrrolidone (PVP) and poly(vinyl alcohol) (PVA). Here PVA/PVP-based composites modified with hydroxyapatite (HAp, 10 wt.

View Article and Find Full Text PDF

Regenerative medicine is becoming a rapidly evolving technique in today's biomedical progress scenario. Scientists around the world suggest the use of naturally synthesized biomaterials to repair and heal damaged cells. Hydroxyapatite (HAp) has the potential to replace drugs in biomedical engineering and regenerative drugs.

View Article and Find Full Text PDF

MoS nanoparticles are typically obtained by high temperature sulfurization of organic and inorganic precursors under a S rich atmosphere and have excellent friction reduction properties. We present a novel approach for making the sulfurization unnecessary for MoO nanotubes during the synthesis process for friction and wear reduction applications while simultaneously achieving a superb tribological performance. To this end, we report the first in situ sulfurization of MoO nanotubes during sliding contact in the presence of sulfur-containing lubricant additives.

View Article and Find Full Text PDF

Background: Pneumonia is a common complication of hospitalisation in severely ill patients who need mechanical ventilation. The aim of this study was to assess the usefulness of the International Nosocomial Infection Control Consortium programme for the surveillance of ventilator-associated pneumonia (VAP).

Methods: A prospective study (1 Jan 2012-30 June 2014) was conducted in the 20-bed ICU.

View Article and Find Full Text PDF