Publications by authors named "Agnieszka Telecka"

Adding roughness to hydrophilic surfaces is generally expected to enhance their wetting by water. Indeed, global free energy minimization predicts decreasing contact angles when roughness factor or surface energy increases. However, experimentally it is often found that water spreading on rough surfaces is impeded by pinning effects originating from local free energy minima; an effect, largely neglected in scientific literature.

View Article and Find Full Text PDF

We report a simple one-step maskless fabrication of inverted pyramids on silicon wafers by reactive ion etching. The fabricated surface structures exhibit excellent anti-reflective properties: The total reflectance of the nano inverted pyramids fabricated by our method can be as low as 12% without any anti-reflective layers, and down to only 0.33% with a silicon nitride coating.

View Article and Find Full Text PDF

We demonstrate the use of roll-to-roll extrusion coating (R2R-EC) for fabrication of nanopatterned polypropylene (PP) foils with strong antiwetting properties. The antiwetting nanopattern is originated from textured surfaces fabricated on silicon wafers by a single-step method of reactive ion etching with different processing gas flow rates. We provide a systematic study of the wetting properties for the fabricated surfaces and show that a controlled texture stretching effect in the R2R-EC process is instrumental to yield the superhydrophobic surfaces with water contact angles approaching 160° and droplet roll-off angles below 10°.

View Article and Find Full Text PDF