Publications by authors named "Agnieszka Sierzchala"

An improved method for the chemical synthesis of RNA was developed utilizing a streamlined method for the preparation of phosphoramidite monomers and a single-step deprotection of the resulting oligoribonucleotide product using 1,2-diamines under anhydrous conditions. The process is compatible with most standard heterobase protection and employs a 2'-O-(1,1-dioxo-1λ(6)-thiomorpholine-4-carbothioate) as a unique 2'-hydroxyl protective group. Using this approach, it was demonstrated that the chemical synthesis of RNA can be as simple and robust as the chemical synthesis of DNA.

View Article and Find Full Text PDF

A novel solid-phase phosphoramidite-based method has been developed for the synthesis of borane phosphonate DNA. Keys to this new approach are replacement of the common 5'-dimethoxytrityl blocking group with a 5'-silyl ether and the use of new protecting groups on the bases (adenine, N6-dimethoxytrityl; cytosine, N4-trimethoxytrityl; guanine, N2-[9-fluorenylmethoxycarbonyl]; thymine, N3-anisoyl). Because of these developments, it is now possible for the first time to synthesize oligodeoxynucleotides having any combination of the four 2'-deoxynucleosides and both phosphate and borane phosphonate internucleotide linkages (including oligomers having exclusively borane phosphonate linkages).

View Article and Find Full Text PDF

A novel solid-phase phosphoramidite based oligodeoxynucleotide two-step synthesis method has been developed. Keys to this method are replacement of the 5'-dimethoxytrityl blocking group with an aryloxycarbonyl and the use of N-dimethoxytrityl protection for the exocyclic amines of adenine and cytosine. With these modifications, coupling of each 2'-deoxynucleoside 3'-phosphoramidite to the growing oligodeoxynucleotide on the solid support can be followed by treatment with an aqueous mixture of peroxy anions buffered at pH 9.

View Article and Find Full Text PDF