Publications by authors named "Agnieszka Pudlarz"

Aging is the most prominent risk factor for neurodegeneration occurrence. The most common neurodegenerative diseases (NDs), Alzheimer's (AD) and Parkinson's (PD) diseases, are characterized by the incidence of proteinopathy, abnormal activation of glial cells, oxidative stress, neuroinflammation, impaired autophagy and cellular senescence excessive for the patient's age. Moreover, mitochondrial disfunction, epigenetic alterations and neurogenesis inhibition, together with increased blood-brain barrier permeability and gut dysbiosis, have been linked to ND pathogenesis.

View Article and Find Full Text PDF

Background/aim: Non-small cell lung cancer (NSCLC) is the deadliest form of cancer worldwide. Understanding the mechanisms of lung cancer development is vital for targeted therapy advancements. This article explores the little-known role of the guanylate kinase-associated protein (GKAP), encoded by the Disks large-associated protein 1 (DLGAP1) gene, in NSCLC along with assessing microRNA-30a-5p's influence on DLGAP1 gene expression in the A549 cell line.

View Article and Find Full Text PDF

Breast cancer is associated with high mortality and morbidity rates. As about 20-30% of patients exhibiting ER-positive phenotype are resistant to hormonal treatment with the standard drug tamoxifen, finding new therapies is a necessity. Postbiotics, metabolites, and macromolecules isolated from probiotic bacteria cultures have been proven to have sufficient bioactivity to exert prohealth and anticancer effects, making them viable adjunctive agents for the treatment of various neoplasms, including breast cancer.

View Article and Find Full Text PDF

Tumor therapy escape due to undesired side effects induced by treatment, such as prosurvival autophagy or cellular senescence, is one of the key mechanisms of resistance that eventually leads to tumor dormancy and recurrence. Glioblastoma is the most frequent and practically incurable neoplasm of the central nervous system; thus, new treatment modalities have been investigated to find a solution more effective than the currently applied standards based on temozolomide. The present study examined the newly synthesized compounds of aziridine-hydrazide hydrazone derivatives to determine their antineoplastic potential against glioblastoma cells in vitro.

View Article and Find Full Text PDF

The aim of the study was to investigate in vivo whether the application of immobilized superoxide dismutase (SOD) and catalase (CAT) could enhance DNA repairing systems and reduce level of CPD (cyclobutane pyrimidine dimers) and 6-4PP ((6-4) pyrimidine-pyrimidone photoproducts), and whether the immobilization on gold (AuNPs) and silver (AgNPs) nanoparticles affects the outcome. The study presents secondary analysis of our previous research. Three-day application of SOD and CAT in all forms of solution decreased the levels of CPD and 6-4PP boosted by UV irradiation.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) and catalase (CAT) immobilized on gold nanoparticles (AuNP) and silver nanoparticles (AgNP) nanoparticles were used to reduce UV radiation-induced oxidative stress in rat skin. The antioxidant influence of the enzymes was investigated on level of malondialdehyde, 8-hydroksy-2'deoksyguanozine, myeloperoxidase, total antioxidant capacity, SOD2 and CAT activity and expression, and glutathione and glutathione peroxidase activity. The application of immobilized SOD and CAT on UV-irradiated skin reduced malondialdehyde and 8-hydroksy-2'deoksyguanozine levels also SOD and CAT activity and expression increased.

View Article and Find Full Text PDF

Nanoparticles have many applications both in industry and medicine. Depending upon their physical and chemical properties, they can be used as carriers of therapeutic molecules or as therapeutics. Nanoparticles are made of synthetic or natural polymers, lipids or metals.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) is one of the best characterized enzyme maintaining the redox state in the cell. A bacterial expression system was used to produce human recombinant manganese SOD with a His-tag on the C-end of the protein for better purification. In addition, gold and silver nanoparticles were chemically synthesized in a variety of sizes, and then mixed with the enzyme for immobilization.

View Article and Find Full Text PDF

In this study, we present a comparison of the antioxidant activity of catalase immobilized on gold nanoparticles (AuNPs) by two methods: i) directly on the surface of AuNPs (non-specific immobilization), and ii) via chemical bonding using a linker (specific immobilization). Quantification of the enzyme amount adsorbed on the nanoparticle surface was determined by native-polyacrylamide gel electrophoresis (native-PAGE). Colloidal stability of AuNPs before and after the enzyme immobilization was monitored with dynamic light scattering (DLS) and UV-vis spectroscopy.

View Article and Find Full Text PDF

Human catalase cDNA was cloned into a pEX-C-His vector. Purified recombinant catalase was immobilized on nanoparticles. Gold and silver nanoparticles were synthesized in a variety of sizes by chemical reduction; no agglomerates or aggregates were observed in any of the colloids during dynamic light scattering or scanning transmission electron microscopy analysis.

View Article and Find Full Text PDF