In this article we present results of our follow-up studies of samples of watch glass obtained and examined within a framework of international intercomparison dosimetry project RENEB ILC 2021. We present three methods of dose reconstruction based on EPR measurements of these samples: calibration method (CM), added dose method (ADM) and added dose&heating method (ADHM). The study showed that the three methods of dose reconstruction gave reliable and similar results in 0.
View Article and Find Full Text PDFElectron Paramagnetic Resonance (EPR) spectroscopy enables detection of paramagnetic centers generated in solids by ionising radiation. In the last years, the ubiquity of glass in personal utility items increased significance of fortuities retrospective dosimetry based on EPR in glass parts of mobile phones and watches. Despite of fading of the signals and their susceptibility to light, it enables dosimetry at medical triage level of 1-2 Gy.
View Article and Find Full Text PDFElectron paramagnetic resonance (EPR) signals generated by ionizing radiation in touch-screen glasses have been reported as useful for personal dosimetry in people accidently exposed to ionizing radiation. This article describes the effect of light exposure on EPR spectra of various glasses obtained from mobile phones. This effect can lead to significant inaccuracy of the radiation doses reconstructed by EPR.
View Article and Find Full Text PDFIn this study, samples of smart phone touch screen glass sheets and tempered glass screen protectors were examined with respect to their potential application in the dosimetry of ionizing radiation. The glass samples were obtained from various phones with different types of glass. Electron paramagnetic resonance (EPR) spectra of the radiation-induced signals (RIS) are presented and their dose dependence within a dose range of 0-20 Gy.
View Article and Find Full Text PDFThe effects of illumination of nail clippings by direct sunlight, UV lamps and fluorescent bulbs on native and radiation-induced electron paramagnetic resonance (EPR) signals in nails are presented. It is shown that a few minutes of exposure of the nail clippings to light including a UV component (sunlight and UV lamps) generates a strong EPR signal similar to the other EPR signals observable in nails: native background (BKG), mechanically induced (MIS) or radiation-induced (RIS). This effect was observed in clippings exposed and unexposed to ionizing radiation prior to the light illuminations.
View Article and Find Full Text PDFThis study is about the accuracy of EPR dosimetry in bones based on deconvolution of the experimental spectra into the background (BG) and the radiation-induced signal (RIS) components. The model RIS's were represented by EPR spectra from irradiated enamel or bone powder; the model BG signals by EPR spectra of unirradiated bone samples or by simulated spectra. Samples of compact and trabecular bones were irradiated in the 30-270 Gy range and the intensities of their RIS's were calculated using various combinations of those benchmark spectra.
View Article and Find Full Text PDF