Publications by authors named "Agnieszka M Banas"

The stratum corneum (SC) forms the outermost layer of the skin, playing a critical role in preventing water loss and protecting against external biological and chemical threats. Approximately 90% of the SC consists of large, flat corneocytes, yet its barrier function primarily relies on the intercellular lipid matrix that surrounds these cells. Traditional methods for characterizing these lipids, such as Fourier transform infrared spectroscopy (FTIR), typically involve macroscopic analysis using attenuated total reflection (ATR) techniques.

View Article and Find Full Text PDF

Forensic science is a field that requires precise and reliable methods for the detection and analysis of evidence. One such method is Fourier Transform Infrared (FTIR) spectroscopy, which provides high sensitivity and selectivity in the detection of samples. In this study, the use of FTIR spectroscopy and statistical multivariate analysis to identify high explosive (HE) materials (C-4, TNT, and PETN) in the residues after high- and low-order explosions is demonstrated.

View Article and Find Full Text PDF

Malaria, caused by parasites of the species Plasmodium, is among the major life-threatening diseases to afflict humanity. The infectious cycle of Plasmodium is very complex involving distinct life stages and transitions characterized by cellular and molecular alterations. Therefore, novel single-cell technologies are warranted to extract details pertinent to Plasmodium-host cell interactions and underpinning biological transformations.

View Article and Find Full Text PDF

In the contemporary spectroscopy there is a trend to record spectra with the highest possible spectral resolution. This is clearly justified if the spectral features in the spectrum are very narrow (for example infra-red spectra of gas samples). However there is a plethora of samples (in the liquid and especially in the solid form) where there is a natural spectral peak broadening due to collisions and proximity predominately.

View Article and Find Full Text PDF

The ability to visualize an object of interest is one of the cornerstones of advancement in science. For this reason, synchrotron radiation-induced X-ray emission (micro-SRIXE) holds special promise as a imaging technique in structural biology, biochemistry, and medicine. It gives the possibility to image concentration of most of the elements in a sample at high space resolution.

View Article and Find Full Text PDF