Plant-derived polyphenols are bioactive compounds with potential health-promoting properties including antioxidant, anti-inflammatory, and anticancer activity. However, their beneficial effects and biomedical applications may be limited due to their low bioavailability. In the present study, we have considered a microencapsulation-based drug delivery system to investigate the anticancer effects of polyphenol-rich (apigenin, caffeic acid, and luteolin) fractions, extracted from a cereal crop pearl millet (), using three phenotypically different cellular models of breast cancer in vitro, namely triple negative HCC1806, ER-positive HCC1428, and HER2-positive AU565 cells.
View Article and Find Full Text PDFThe reaction of glycerol with CO to produce glycerol carbonate was performed successfully in the presence of gold nanoparticles (AuNPs) supported by a metal-organic framework (MOF) constructed from mixed carboxylate (terephthalic acid and 1,3,5-benzenetricarboxylic acid). The most efficient were two AuNPs@MOF catalysts prepared from pre-synthesized MOF impregnated with Au salt and subsequently reduced to AuNPs using H (catalyst 4%Au(H)@MOF1) or reduced with NaBH (catalyst 4%Au@PEI-MOF1). Compared to existing catalysts, AuNPs@MOFs require simple preparation and operate under mild and sustainable conditions, i.
View Article and Find Full Text PDFThe surface modification of magnetite nanoparticles (FeO NPs) is a promising approach to obtaining biocompatible and multifunctional nanoplatforms with numerous applications in biomedicine, for example, to fight cancer. However, little is known about the effects of FeO NP-associated reductive stress against cancer cells, especially against chemotherapy-induced drug-resistant senescent cancer cells. In the present study, FeO NPs coated by dextran (FeO@Dex) and glucosamine-based amorphous carbon coating (FeO@aC) with potent reductive activity were characterized and tested against drug-induced senescent breast cancer cells (Hs 578T, BT-20, MDA-MB-468, and MDA-MB-175-VII cells).
View Article and Find Full Text PDFThe development of sustainable biomaterials and surfaces to prevent the accumulation and proliferation of viruses and bacteria is highly demanded in healthcare areas. This study describes the assembly and full characterization of two new bioactive silver(I) coordination polymers (CPs) formulated as [Ag(aca)(μ-PTA)]·5HO () and [Ag(μ-ada)(μ-PTA)]·4HO (). These products were generated by exploiting a heteroleptic approach based on the use of two different adamantoid building blocks, namely 1,3,5-triaza-7-phosphaadamantane (PTA) and 1-adamantanecarboxylic (Haca) or 1,3-adamantanedicarboxylic (Hada) acids, resulting in the assembly of 1D () and 3D ().
View Article and Find Full Text PDFThe selective oxidation of alcohols, leading to appropriate aldehydes, is widely recognised as one of the most important reactions in organic synthesis. With ever-increasing environmental concerns, much attention has been directed toward developing catalytic protocols that use molecular oxygen as an oxidant. An ideal green oxidation process should employ a highly active, selective and recyclable catalyst that can work with oxygen under mild conditions.
View Article and Find Full Text PDFCoordination polymers have emerged as a new class of potent biologically active agents due to a variety of important characteristics such as the presence of bioactive metal centers and linkers, low toxicity, stability, tailorable structures, and bioavailability. The research on intermediate metabolites has also been explored with implications toward the development of selective anticancer, antimicrobial, and antiviral therapeutic strategies. In particular, quinolinic acid (Hquin) is a recognized metabolite in kynurenine pathway and potent neurotoxic molecule, which has been selected in this study as a bioactive building block for assembling a new silver(I) coordination polymer, [Ag(Hquin)(μ-PTA)]·HO ().
View Article and Find Full Text PDFSulforaphane(SFN) and erucin(ERN) are isothiocyanates (ITCs) bearing, respectively, methylsulfinyl and methylsulfanyl groups. Their chemopreventive and anticancer activity is attributed to ability to modulate cellular redox status due to induction of Phase 2 cytoprotective enzymes (indirect antioxidant action) but many attempts to connect the bioactivity of ITCs with their radical trapping activity failed. Both ITCs are evolved from their glucosinolates during food processing of Cruciferous vegetables, therefore, we studied antioxidant behaviour of SFN/ERN at elevated temperature in two lipid systems.
View Article and Find Full Text PDFIn this communication we demonstrate that two natural isothiocyanates, sulforaphane (SFN) and erucin (ERN), inhibit autoxidation of lipids at 140 °C but not below 100 °C. This effect is due to thermal decomposition of ERN and SFN to sulfenic acids and methylsulfinyl radicals, species able to trap lipidperoxyl radicals. Our observations shed new light on thermal processing of vegetables containing these two isothiocyanates.
View Article and Find Full Text PDF