Publications by authors named "Agnieszka Klosowska-Wardega"

Histidine domain-containing protein tyrosine phosphatase (HD-PTP) is a putative phosphatase that has been shown to affect the signaling and downregulation of certain receptor tyrosine kinases. To investigate if HD-PTP affects platelet-derived growth factor receptor β (PDGFRβ) signaling, we employed the overexpression of HA-tagged HD-PTP, as well as siRNA-mediated and lentivirus shRNA-mediated silencing of HD-PTP in NIH3T3 cells. We found that HD-PTP was recruited to the PDGFRβ in a ligand-dependent manner.

View Article and Find Full Text PDF

Melanomas respond poorly to chemotherapy. In this study, we investigated the sensitization of B16 mouse melanoma tumors to paclitaxel by a combination of two tyrosine kinase inhibitors: vatalanib, targeting vascular endothelial growth factor receptors, and imatinib, an inhibitor targeting for example, Abl/BCR-ABL, the platelet-derived growth factor receptor, and stem cell factor receptor c-Kit. C57Bl6/J mice carrying B16/PDGF-BB mouse melanoma tumors were treated daily with vatalanib (25 mg/kg), imatinib (100 mg/kg), or a combination of these drugs.

View Article and Find Full Text PDF

Elevation of the interstitial fluid pressure (IFP) of carcinoma is an obstacle in treatment of tumors by chemotherapy and correlates with poor drug uptake. Previous studies have shown that treatment with inhibitors of platelet-derived growth factor (PDGF) or vascular endothelial growth factor (VEGF) signaling lowers the IFP of tumors and improve chemotherapy. In this study, we investigated whether the combination of PDGFR and VEGFR inhibitors could further reduce the IFP of KAT-4 human carcinoma tumors.

View Article and Find Full Text PDF

The aim of our study was to further explore the use of anti-angiogenic therapy targeting the vascular endothelial growth factor receptor (VEGFR) on endothelial cells while simultaneously targeting platelet-derived growth factor receptors (PDGFRs) on adjacent pericytes. B16 mouse melanoma tumors exogenously expressing PDGF-BB (B16/PDGF-BB) display higher pericyte coverage on the vasculature compared to the parental B16 tumors (B16/mock). These models were used to investigate the effects of combination therapy targeting VEGFR and PDGFR signaling on size-matched tumors.

View Article and Find Full Text PDF