The global warming and environmental pollution are two crucial contemporary concerns. As both are strongly connected with urbanisation and anthropogenic impact on the environment, they often affect the ecosystem simultaneously. Aquatic habitats are particularly susceptible to thermal and chemical pollution.
View Article and Find Full Text PDFChemical pollution was indicated as a global environmental problem since elevated concentrations of toxic substances were recorded in almost all ecosystems worldwide. Trace elements, released to environment due to industrial, agricultural and urban activities, are of special concern due to their non-degradability, persistence, bioaccumulation in organisms and potential toxicity. Reliable methods for assessing the level of pollution are essential for proper monitoring and control of pollution.
View Article and Find Full Text PDFThis is the first study that comprehensively compares , , and growing in the field; industrially affected conditions in respect of elements contents, water-plant transfer, and bioaccumulation using statistical analyses and indexes and their suitability for phytoremediation was considered. Secondary aim of the study was to fill the gap in research on the impact of copper smelters on aquatic ecosystems. Although the manuscript describes a case study performed near copper smelter in Poland, due to the novel results and cosmopolitan distribution of the species and significant world-wide impact of industry on the environment the results may be interested to broad publicity and find substantial application.
View Article and Find Full Text PDFThe assessment of trace metal pollution in aquatic environments remains a challenge. Chemical methods are insufficient and bioindicators seem to be the most promising alternative. Finding an adequate species is important to ensure accurate data.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2019
Salvinia natans meets many criteria for accumulative bioindicators and phytoremediation agents. However, the majority of studies on its bioaccumulation capacity were performed under controlled culture conditions. In the present study, Salvinia natans was investigated in a field study.
View Article and Find Full Text PDFInt J Phytoremediation
September 2019
It is known that both natural and artificial electric fields (EF) affect plants physiological parameters as well as germination, growth and yield. The present article describes results of a preliminary experiment on the impact of electric field on aquatic plants biogeochemistry. The objective of the present study was the assessment of the influence exerted by the electric field on growth and trace metals content of Elodea canadensis.
View Article and Find Full Text PDFTrees are widely used for biomonitoring and filtering air in industrial, urban, and rural areas. This research was undertaken to examine accumulation capacities of macroelements (Ca, K, Mg, Na) and trace metals (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in needles and bark of Pinus sylvestris and leaves and bark of Quercus petraea growing in the vicinity of the chlor-alkali plant PCC Rokita in Brzeg Dolny (Lower Silesia, SW Poland). Because Scots pine is well studied and considered a useful bioindicator, we have used this species as a base for comparison of the accumulation ability of sessile oak that shows some features of good bioindicator, but whose biogeochemistry was scarcely studied.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2017
The aims of the present investigation were to reveal various trace metal accumulation abilities of two common helophytes Typha latifolia and Phragmites australis and to investigate their potential use in the phytoremediation of environmental metal pollution. The concentrations of Fe, Mn, Zn, Cu, Cd, Pb and Ni were determined in roots, rhizomes, stems and leaves of both species studied as well as in corresponding water and bottom sediments from 19 sites selected within seven lakes in western Poland (Leszczyńskie Lakeland). The principal component and classification analysis showed that P.
View Article and Find Full Text PDFThe contents of Cd, Cu, Fe, Mn, Ni, Pb, and Zn in leaves of Typha latifolia (broadleaf cattail), water and bottom sediment from 72 study sites designated in different regions of Poland were determined using atomic absorption spectrometry. The aim of the study was to evaluate potential use of T. latifolia in biomonitoring of trace metal pollution.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2015
In the present study, the concentrations of trace and alkali metals in leaves of four common helophytes, Sparganium erectum, Glyceria maxima, Phalaris arundinacea, and Phragmites australis, as well as in corresponding water and bottom sediments were investigated to ascertain plant bioaccumulation ability. Results showed that Mn and Fe were the most abundant trace metals in all plant species, while Co and Pb contents were the lowest. Leaves of species studied differed significantly in respect of element concentrations.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
December 2014
The aim of this study was to assess nutrient and alkali metal accumulation and their distribution in the organs of Phalaris arundinacea and relations between environmental macroelement concentrations and accumulation in plant tissues. The content of N, P, K, Ca, Mg and Na in water, bottom sediments and different organs of Phalaris arundinacea from the Bystrzyca River (Lower Silesia) was determined. The organs of the reed canary grass contained relatively high amounts of macroelements and differed significantly in their accumulation.
View Article and Find Full Text PDFThe content of nutrients (N, P, K, Ca and Mg) and of trace metals (Fe, Cu, Mn, Zn, Pb, Cd, Co and Ni) in water, bottom sediments and various organs of Glyceria maxima from 19 study sites selected in the Jeziorka River was determined. In general, the concentrations of nutrients recorded in the plant material decreased in the following order: leaf>root>rhizome>stem, while the concentrations of the trace elements showed the following accumulation scheme: root>rhizome>leaf>stem. The bioaccumulation and transfer factors for nutrients were significantly higher than for trace metals.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
August 2013
Concentrations of the elements Cd, Cr, Cu, Fe, Li, Mn, N, Ni, Pb and Zn in Andromeda polifolia, Oxycoccus microcarpus and in the peat in which these plants grew were measured in the Western Sudety (Karkonosze and Izerskie Mts., SW Poland). Of both the investigated plant fruit, O.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
March 2013
In this investigation we focus on the concentration of elements in Viscum album and its host (Sorbus aucuparia) as bioindicators of urban pollution. These broadly widespread species, very common in polluted areas may provide important information to monitor environmental quality throughout the year, especially for V. album.
View Article and Find Full Text PDF