In plant cells, Golgi vesicles are transported to the division plane to fuse with each other, forming the cell plate, the initial membrane-bordered cell wall separating daughter cells. Vesicles, but not organelles, move through the phragmoplast, which consists of two opposing cylinders of microtubules and actin filaments, interlaced with endoplasmic reticulum membrane. To study physical aspects of this transport/inhibition process, we microinjected fluorescent synthetic 1,2-dioleoyl-sn-glycero-3-phospho-rac-1-glycerol (DOPG) vesicles and polystyrene beads into Tradescantia virginiana stamen hair cells.
View Article and Find Full Text PDFThe cell plate is the new cell wall, with bordering plasma membrane, that is formed between two daughter cells in plants, and it is formed by fusion of vesicles (approximately 60 nm). To start to determine physical properties of cell plate forming vesicles for their transport through the phragmoplast, and fusion with each other, we microinjected fluorescent synthetic lipid vesicles that were made of 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DOPG) into Tradescantia virginiana stamen hair cells. During interphase, the 60-nm wide DOPG vesicles moved inside the cytoplasm comparably to organelles.
View Article and Find Full Text PDF