Publications by authors named "Agnieszka E Jucht"

Pharmacologic inhibitors of cellular hydroxylase oxygen sensors are protective in multiple preclinical models of inflammation. However, the molecular mechanisms underlying this regulation are only partly understood, preventing clinical translation. We previously proposed a new mechanism for cellular oxygen sensing: oxygen-dependent, (likely) covalent protein oligomer (oxomer) formation.

View Article and Find Full Text PDF

Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation.

View Article and Find Full Text PDF

Cellular and tissue adaptations to oxygen deprivation (hypoxia) are necessary for both normal physiology and disease. Responses to hypoxia are initiated by the cellular oxygen sensors prolyl-4-hydroxylase domain (PHD) proteins 1-3 and factor inhibiting HIF (FIH). These enzymes regulate the transcription factor hypoxia-inducible factor (HIF) in a hypoxia-sensitive manner.

View Article and Find Full Text PDF

Limited oxygen availability (hypoxia) commonly occurs in a range of physiological and pathophysiological conditions, including embryonic development, physical exercise, inflammation, and ischemia. It is thus vital for cells and tissues to monitor their local oxygen availability to be able to adjust in case the oxygen supply is decreased. The cellular oxygen sensor factor inhibiting hypoxia-inducible factor (FIH) is the only known asparagine hydroxylase with hypoxia sensitivity.

View Article and Find Full Text PDF

Dysregulated energy metabolism is a major contributor to a multitude of pathologies, including obesity and diabetes. Understanding the regulation of metabolic homeostasis is of utmost importance for the identification of therapeutic targets for the treatment of metabolically driven diseases. We previously identified the deubiquitinase OTUB1 as substrate for the cellular oxygen sensor factor-inhibiting HIF (FIH) with regulatory effects on cellular energy metabolism, but the physiological relevance of OTUB1 is unclear.

View Article and Find Full Text PDF
Article Synopsis
  • - OTUB1 is a highly expressed deubiquitinase vital for lung function, with its expression linked to lung cancer and pulmonary fibrosis, but its exact role remained unclear until now.
  • - Researchers found that deleting the Otub1 gene in mice caused serious issues, leading to perinatal death due to breathing difficulties and increased lung cell proliferation, affecting lung development.
  • - The study concludes that OTUB1 negatively regulates mTOR signaling, playing crucial roles in lung cell growth, development, and maintaining normal respiratory function in adults.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionveq9eprrqpge6lk16bbns3suimntne7s): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once