Chromosomal translocations in non-Hodgkin lymphoma (NHL) result in activation of oncogenes by placing them under the regulation of immunoglobulin heavy chain (IGH) super-enhancers. Aberrant expression of translocated oncogenes induced by enhancer activity can contribute to lymphomagenesis. The role of the IGH enhancers in normal B-cell development is well established, but knowledge regarding the precise mechanisms of their involvement in control of the translocated oncogenes is limited.
View Article and Find Full Text PDFWe previously showed that MYC promoted Burkitt lymphoma (BL) growth by inhibiting the tumor suppressor miR-150, resulting in release of miR-150 targets MYB and ZDHHC11. The ZDHHC11 gene encodes three different transcripts including a mRNA (pcZDHHC11), a linear long non-coding RNA (lncZDHHC11) and a circular RNA (circZDHHC11). All transcripts contain the same region with 18 miR-150 binding sites.
View Article and Find Full Text PDFDNA damage response (DDR) is a complex process, essential for cell survival. Especially deleterious type of DNA damage are DNA double-strand breaks (DSB), which can lead to genomic instability and malignant transformation if not repaired correctly. The central player in DSB detection and repair is the ATM kinase which orchestrates the action of several downstream factors.
View Article and Find Full Text PDFJ Appl Genet
February 2024
Burkitt lymphoma (BL) is a highly aggressive lymphoma that mainly affects children and young adults. Chemotherapy is effective in young BL patients but the outcome in adults is less satisfactory. Therefore, there is a need to enhance the cytotoxic effect of drugs used in BL treatment.
View Article and Find Full Text PDFThe transcription factor MYC is a proto-oncogene with a well-documented essential role in the pathogenesis and maintenance of several types of cancer. MYC binds to specific E-box sequences in the genome to regulate gene expression in a cell-type- and developmental-stage-specific manner. To date, a combined analysis of essential MYC-bound E-boxes and their downstream target genes important for growth of different types of cancer is missing.
View Article and Find Full Text PDFEukaryotic genomes contain several types of recurrent sequence motifs, e.g. transcription factor motifs, miRNA binding sites, repetitive elements.
View Article and Find Full Text PDFLong non-coding RNAs have proven to be important molecules in carcinogenesis. Due to little knowledge about them, the molecular mechanisms of tumorigenesis are still being explored. The aim of this work was to study the effect of ionizing radiation on the expression of lncRNAs in head and neck squamous cell carcinoma (HNSCC) in patients responding and non-responding to radiotherapy.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) are involved in many normal and oncogenic pathways through a diverse repertoire of transcriptional and posttranscriptional regulatory mechanisms. LncRNAs that are under tight regulation of well-known oncogenic transcription factors such as c-Myc (Myc) are likely to be functionally involved in their disease-promoting mechanisms. Myc is a major driver of many subsets of B cell lymphoma and to date remains an undruggable target.
View Article and Find Full Text PDFWe previously described involvement of the MYC/miR-150/MYB/ZDHHC11 network in the growth of Burkitt lymphoma (BL) cells. Here we studied the relevance of this network in the two other B-cell lymphomas: Hodgkin lymphoma (HL) and diffuse large B-cell lymphoma (DLBCL). Expression levels of the network components were assessed at the RNA and protein level.
View Article and Find Full Text PDFEur J Pharmacol
November 2021
B-cell non-Hodgkin lymphoma (NHL) is among the ten most common malignancies. Survival rates range from very poor to over 90% and highly depend on the stage and subtype. Characteristic features of NHL are recurrent translocations juxtaposing an oncogene (e.
View Article and Find Full Text PDFB-cell lymphomas and leukemias derive from B cells at various stages of maturation and are the 6th most common cancer-related cause of death. While the role of several oncogenes and tumor suppressors in the pathogenesis of B-cell neoplasms was established, recent research indicated the involvement of non-coding, regulatory sequences. Enhancers are DNA elements controlling gene expression in a cell type- and developmental stage-specific manner.
View Article and Find Full Text PDFA hallmark of classical Hodgkin lymphoma (cHL) is the attenuation of B-cell transcription factors leading to global transcriptional reprogramming. The role of miRNAs (microRNAs) involved in this process is poorly studied. Therefore, we performed global miRNA expression profiling using RNA-seq on commonly used cHL cell lines, non-Hodgkin lymphoma cell lines and sorted normal CD77 germinal centre B-cells as controls and characterized the cHL miRNome (microRNome).
View Article and Find Full Text PDFHypoxia in non-small cell lung cancer (NSCLC) affects cancer progression, metastasis and metabolism. We previously showed that FAM13A was induced by hypoxia in NSCLC but the biological function of this gene has not been fully elucidated. This study aimed to investigate the role of hypoxia-induced FAM13A in NSCLC progression and metastasis.
View Article and Find Full Text PDFSézary syndrome (SS) is an aggressive form of cutaneous T-cell lymphoma (CTCL) characterized by the presence of circulating malignant CD4+ T cells (Sézary cells) with many complex changes in the genome, transcriptome and epigenome. Epigenetic dysregulation seems to have an important role in the development and progression of SS as it was shown that SS cells are characterized by widespread changes in DNA methylation. In this study, we show that the transmembrane protein coding gene TMEM244 is ectopically expressed in all SS patients and SS-derived cell lines and, to a lower extent, in mycosis fungoides and in a fraction of T-cell lymphomas, but not in B-cell malignancies and mononuclear cells of healthy individuals.
View Article and Find Full Text PDFThe expression of several microRNAs (miRNAs) is known to be changed in Burkitt lymphoma (BL), compared to its normal counterparts. Although for some miRNAs, a role in BL was demonstrated, for most of them, their function is unclear. In this study, we aimed to identify miRNAs that control BL cell growth.
View Article and Find Full Text PDFIntroduction: The inactivation of both alleles of the gene leads to ataxia-telangiectasia syndrome, whereas carriers of monoallelic mutations in the gene are associated with increased risk of different types of cancer. Three substitutions in the gene (c.6095G>A, c.
View Article and Find Full Text PDFMicroRNAs (miRNAs) play important roles in development, differentiation, and homeostasis by regulating protein translation. In B-cell lymphoma, many miRNAs have altered expression levels, and for a limited subset of them, experimental data supports their functional relevance in lymphoma pathogenesis. This chapter describes an unbiased next-generation sequencing (NGS)-based high-throughput screening approach to identify miRNAs that are involved in the control of cell growth.
View Article and Find Full Text PDFMyelocytomatosis viral oncogene homolog (MYC) plays an important role in the regulation of many cellular processes, and its expression is tightly regulated at the level of transcription, translation, protein stability, and activity. Despite this tight regulation, MYC is overexpressed in many cancers and contributes to multiple hallmarks of cancer. In recent years, it has become clear that noncoding RNAs add a crucial additional layer to the regulation of MYC and its downstream effects.
View Article and Find Full Text PDFBackground/aims: Classical Hodgkin lymphoma (cHL) is among the most frequent lymphoma subtypes. The tumor cells originate from crippled germinal center (GC)-B cells that escaped from apoptosis. MicroRNAs (miRNAs) play important roles in B-cell maturation and aberrant expression of miRNAs contributes to the pathogenesis of cHL.
View Article and Find Full Text PDFAims: Type 1 diabetes (T1D) is an autoimmune disorder caused by the T-cell mediated destruction of the insulin-producing pancreatic beta cells. T1D is a consequence of complex processes, influenced by genetic, epigenetic and environmental factors. MicroRNAs (miRNAs) are small non-coding RNAs that target multiple mRNAs and regulate gene expression.
View Article and Find Full Text PDFBackground: DNA damage repair is a complex process, which can trigger the development of cancer if disturbed. In this study, we hypothesize a role of variants in the ATM, H2AFX and MRE11 genes in determining breast cancer (BC) susceptibility.
Methods: We examined the whole sequence of the ATM kinase domain and estimated the frequency of founder mutations in the ATM gene (c.
miRNAs are small noncoding RNAs involved in the posttranscriptional regulation of gene expression. Deregulated miRNA levels have been linked to Burkitt lymphoma (BL) pathogenesis. To date, the number of known pathogenesis-related miRNA-target gene interactions is limited.
View Article and Find Full Text PDFIntroduction: The gene product is part of the MRE11/RAD50/NBN complex, which plays an essential role in genomic stability. In the study we try to answer the question what is the effect of irradiation on DNA synthesis, gene expression and chromosomal stability in cells with homozygous c.657-661del, and heterozygous c.
View Article and Find Full Text PDF