Publications by authors named "Agnieszka Basta-Kaim"

Prenatal excess of glucocorticoids (GCs) is considered to be one of the highly impacting factors contributing to depression development. Although GCs are crucial for normal fetal development and their administration (mainly dexamethasone, DEX) is a life-saving procedure for those at risk of preterm delivery, exposure to excess levels of GCs during pregnancy can yield detrimental consequences. Therefore, we aimed to systematically investigate the brain molecular alterations triggered by prenatal DEX administration.

View Article and Find Full Text PDF

Microglia are the primary innate immune cells of the central nervous system and extensively contribute to brain homeostasis. Dysfunctional or excessive activity of microglia may be associated with several neuropsychiatric disorders, including schizophrenia. Therefore, we examined whether aripiprazole and risperidone could influence the expression of the and axes, which are crucial for the regulation of microglial activity and interactions of these cells with neurons.

View Article and Find Full Text PDF

The dental pulp is the inner part of the tooth responsible for properly functioning during its lifespan. Apart from the very big biological heterogeneity of dental cells, tooth microenvironments differ a lot in the context of mechanical properties-ranging from 5.5 kPa for dental pulp to around 100 GPa for dentin and enamel.

View Article and Find Full Text PDF

Background: Maternal elevated glucocorticoid levels during pregnancy can affect the developing fetus, permanently altering the structure and function of its brain throughout life. Excessive action of these hormones is known to contribute to psychiatric disorders, including depression.

Materials: The study was performed in a rat model of depression based on prenatal administration of dexamethasone (DEX) in late pregnancy (0.

View Article and Find Full Text PDF

Microglial cells have been demonstrated to be significant resident immune cells that maintain homeostasis under physiological conditions. However, prolonged or excessive microglial activation leads to disturbances in the resolution of inflammation (RoI). Formyl peptide receptor 2 (FPR2) is a crucial player in the RoI, interacting with various ligands to induce distinct conformational changes and, consequently, diverse biological effects.

View Article and Find Full Text PDF

A substantial body of evidence demonstrates an association between a malfunction in the resolution of acute inflammation and the development of chronic inflammation. Recently, in this context, the importance of formyl peptide receptor 2 (FPR2) has been underlined. FPR2 activity is modulated by a wide range of endogenous ligands, including specialized pro-resolving mediators (SPMs) (e.

View Article and Find Full Text PDF

Accumulating evidence indicates that early adverse life experiences may be involved in the pathogenesis of Alzheimer's disease (AD). Prenatal stress (PS) can affect brain maturation and neuroimmune and metabolic interactions, leading to age-dependent cognitive deficits in offspring. However, a multi-faceted cause-and-effect impact of PS on the development of cognitive deficits in the process of physiological ageing and in the APP mouse model of Alzheimer's disease has not yet been evaluated.

View Article and Find Full Text PDF

Ischaemic stroke is characterized by a sudden loss of blood circulation to an area of the brain, resulting in a corresponding loss of neurologic function. As a result of this process, neurons in the ischaemic core are deprived of oxygen and trophic substances and are consequently destroyed. Tissue damage in brain ischaemia results from a complex pathophysiological cascade comprising various distinct pathological events.

View Article and Find Full Text PDF

Atypical antipsychotics currently constitute the first-line medication for schizophrenia, with quetiapine being one of the most commonly prescribed representatives of the group. Along with its specific affinity for multiple receptors, this compound exerts other biological characteristics, among which anti-inflammatory effects are strongly suggested. Simultaneously, published data indicated that inflammation and microglial activation could be diminished by stimulation of the CD200 receptor (CD200R), which takes place by binding to its ligand (CD200) or soluble CD200 fusion protein (CD200Fc).

View Article and Find Full Text PDF

The vitamin D receptor (VDR) belongs to the nuclear receptor superfamily of transcription factors. The VDR is expressed in diverse brain regions and has been implicated in the neuroprotective, antiaging, prosurvival, and anti-inflammatory action of vitamin D. Accordingly, a relationship between vitamin D insufficiency and susceptibility to neurodegenerative diseases has been suggested.

View Article and Find Full Text PDF

Since depression produces a long-term negative impact on quality of life, understanding the pathophysiological changes implicated in this disorder is urgent. There is growing evidence that demonstrates a key role for dysfunctional energy metabolism in driving the onset of depression; thus, bioenergetic alterations should be extensively studied. Brain metabolism is known to be a glucocorticoid-sensitive process, but the long-lasting consequences in adulthood following high levels of glucocorticoids at the early stages of life are unclear.

View Article and Find Full Text PDF

Ischemic stroke is one of the major causes of death and permanent disability worldwide. The only efficient treatment to date is anticoagulant therapy and thrombectomy, which enable restitution of blood flow to ischemic tissues. Numerous promising neuroprotectants have failed in clinical trials.

View Article and Find Full Text PDF

In recent years, increasing attention has been paid to the role of physical factors in biological processes. This direction was ultimately confirmed by the recent 2021 Nobel Prize in medicine and physiology awarded in ½ to Ardem Patapoutian for his discovery of Piezo1 and Piezo2 mechanosensitive receptors. Among them, Piezo2 is responsible for sensing touch, while Piezo1 is engaged in a variety of mechanotransduction events.

View Article and Find Full Text PDF

The maternal immune activation produced by the systemic administration of lipopolysaccharide (LPS) in rats provides valuable insights into the basis of behavioural schizophrenia-like disturbances and biochemical changes in the brains of the offspring, such as microglial activation. Regarding therapy, antipsychotics continually constitute the cornerstone of schizophrenia treatment. To their various efficacy and side effects, as well as not fully recognised mechanisms of action, further characteristics have been suggested, including an anti-inflammatory action via the impact on neuron-microglia axes responsible for inhibition of microglial activation.

View Article and Find Full Text PDF

Here we present comparative data on the inhibition of lipid peroxidation by a variety of tocochromanols in liposomes. We also show for the first time the potential neuroprotective role of all the vitamin E homologues investigated on the neuronally differentiated human neuroblastoma SH-SY5Y cell line. α-Tocopherol had nearly no effect in the inhibition of lipid peroxidation, while β-, γ-, and δ-tocopherols inhibited the reaction completely when it was initiated in a lipid phase.

View Article and Find Full Text PDF

Major depressive disorder and a major depressive episode (MDD/MDE) are characterized by activation of the immune-inflammatory response system (IRS) and the compensatory immune-regulatory system (CIRS). In MDD/MDE, recent precision nomothetic psychiatry studies discovered a new endophenotype class, namely major dysmood disorder (MDMD), a new pathway phenotype, namely reoccurrence of illness (ROI), and a new model of the phenome of depression. The aim of the present study is to examine the association between ROI, the phenome of depression, and MDMD's features and IRS, CIRS, macrophages (M1), T helper (Th)1, Th2, Th17, T regulatory, and growth factor (GF) profiles.

View Article and Find Full Text PDF

Formyl peptide receptor 2 (FPR2) agonists can boost the resolution of inflammation and can offer alternative approaches for the treatment of pathologies with underlying chronic neuroinflammation, including neurodegenerative disorders. Starting from the FPR2 agonist previously identified in our laboratory and through fine-tuning of FPR2 potency and metabolic stability, we have identified a new series of ureidopropanamide derivatives endowed with a balanced combination of such properties. Computational studies provided insights into the key interactions of the new compounds for FPR2 activation.

View Article and Find Full Text PDF

Prolonged or excessive microglial activation may lead to disturbances in the resolution of inflammation (RoI). The importance of specialized pro-resolving lipid mediators (SPMs) in RoI has been highlighted. Among them, lipoxins (LXA4) and aspirin-triggered lipoxin A4 (AT-LXA4) mediate beneficial responses through the activation of N-formyl peptide receptor-2 (FPR2).

View Article and Find Full Text PDF

The major histopathological hallmarks of Alzheimer's disease (AD) include β-amyloid (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Aβ 1-42 (Aβ) has been shown to induce neurotoxicity and secretion of proinflammatory mediators that potentiate neurotoxicity. Proinflammatory and neurotoxic activities of Aβ were shown to be mediated by interactions with several cell surface receptors, including the chemotactic G protein-coupled N-formyl peptide receptor 2 (FPR2).

View Article and Find Full Text PDF

Nervous system diseases are the subject of intensive research due to their association with high mortality rates and their potential to cause irreversible disability. Most studies focus on targeting the biological factors related to disease pathogenesis, e.g.

View Article and Find Full Text PDF

Accumulating evidence indicates a pivotal role for chronic inflammatory processes in the pathogenesis of neurodegenerative and psychiatric disorders. G protein-coupled formyl peptide receptor 2 (FPR2) mediates pro-inflammatory or anti-/pro-resolving effects upon stimulation with biased agonists. We aimed to evaluate the effects of a new FPR2 ureidopropanamide agonist, compound MR-39, on neuroinflammatory processes in organotypic hippocampal cultures (OHCs) derived from control (WT) and knockout FPR2-/- mice (KO) exposed to bacterial endotoxin (lipopolysaccharide; LPS).

View Article and Find Full Text PDF

Formyl peptide receptors (FPRs) belong to the family of seven-transmembrane G protein-coupled receptors. Among them, FPR2 is a low affinity receptor for N-formyl peptides and is considered the most promiscuous member of FPRs. FPR2 is able to recognize a broad variety of endogenous or exogenous ligands, ranging from lipid to proteins and peptides, including non-formylated peptides.

View Article and Find Full Text PDF

Schizophrenia has a complex and heterogeneous molecular and clinical picture. Over the years of research on this disease, many factors have been suggested to contribute to its pathogenesis. Recently, the inflammatory processes have gained particular interest in the context of schizophrenia due to the increasing evidence from epidemiological, clinical and experimental studies.

View Article and Find Full Text PDF

The crucial role of microtubules in the mitotic-related segregation of chromosomes makes them an excellent target for anticancer microtubule targeting drugs (MTDs) such as vinflunine (VFL), colchicine (COL), and docetaxel (DTX). MTDs affect mitosis by directly perturbing the structural organisation of microtubules. By a direct assessment of the biomechanical properties of prostate cancer DU145 cells exposed to different MTDs using atomic force microscopy, we show that cell stiffening is a response to the application of all the studied MTDs (VFL, COL, DTX).

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Agnieszka Basta-Kaim"

  • - Agnieszka Basta-Kaim's research primarily focuses on the interactions between the immune system and neuropsychiatric disorders, particularly investigating how prenatal stressors and pharmacological agents like antipsychotics affect microglial behavior and brain inflammation.
  • - Recent findings highlight the significant role of microglia in neuroinflammation and their regulation through specific receptors, suggesting potential therapeutic targets for conditions such as schizophrenia and Alzheimer's disease.
  • - The research also explores the impact of early-life stressors, such as maternal glucocorticoid exposure, on long-term brain health, metabolic homeostasis, and the progression of depressive disorders, emphasizing the complex interplay between immune responses and mental health.